Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_2_a11, author = {Ruiz, U. and Marroquin, J. L. and Murrieta-Cid, R.}, title = {Tracking an omnidirectional evader with a differential drive robot at a bounded variable distance}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {371--385}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a11/} }
TY - JOUR AU - Ruiz, U. AU - Marroquin, J. L. AU - Murrieta-Cid, R. TI - Tracking an omnidirectional evader with a differential drive robot at a bounded variable distance JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 371 EP - 385 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a11/ LA - en ID - IJAMCS_2014_24_2_a11 ER -
%0 Journal Article %A Ruiz, U. %A Marroquin, J. L. %A Murrieta-Cid, R. %T Tracking an omnidirectional evader with a differential drive robot at a bounded variable distance %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 371-385 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a11/ %G en %F IJAMCS_2014_24_2_a11
Ruiz, U.; Marroquin, J. L.; Murrieta-Cid, R. Tracking an omnidirectional evader with a differential drive robot at a bounded variable distance. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 2, pp. 371-385. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_2_a11/
[1] Başar, T. and Olsder, G. (1982). Dynamic Noncooperative Game Theory, Academic Press, New York, NY.
[2] Balkcom, D. and Mason, M. (2002). Time optimal trajectories for bounded velocity differential drive vehicles, International Journal of Robotics Research 21(3): 219–232.
[3] Bandyopadhyay, T., Li, Y., Ang, M. and Hsu, D. (2006). A greedy strategy for tracking a locally predictable target among obstacles, Proceedings of the International Conference on Robotics and Automation, ICRA 2006, Orlando, FL, USA, pp. 2342–2347.
[4] Becker, C., González-Baños, H., Latombe, J. and Tomasi, C. (1995). An intelligent observer, Proceedings of the International Symposium on Experimental Robotics, ISER 1995, Stanford, CA, USA, pp. 153–160.
[5] Bhattacharya, S. and Hutchinson, S. (2010). On the existence of Nash equilibrium for a two player pursuit-evasion game with visibility constraints, International Journal of Robotics Research 29(7): 831–839.
[6] Chung, T. (2008). On probabilistic search decisions under searcher motion constraints, Proceedings of the International Workshop on the Algorithmic Foundations of Robotics, WAFR 2008, Guanajuato, Mexico, pp. 501–516.
[7] Fabiani, P., González, H., Latombe, J. and Lin, D. (2002). Tracking an unpredictable target among occluding obstacles under localization uncertainties, Robotics and Autonomous Systems 38(1): 31–48.
[8] González, H., Lee, C. Y. and Latombe, J. C. (2002). Real-time combinatorial tracking of a target moving unpredictably among obstacles, Proceedings of the International Conference on Robotics and Automation, ICRA 2002, Washington, DC, USA, pp. 1683–1690.
[9] Guibas, L., Latombe, J., LaValle, S.M., Lin, D. and Motwani, R. (1999). A visibility-based pursuit-evasion problem, International Journal of Computational Geometry and Applications 9(4–5): 471–494.
[10] Hájek, O. (1965). Pursuit Games, Academic Press, New York, NY.
[11] Hespanha, J., Prandini, M. and Sastry, S. (2000). Probabilistic pursuit-evasion games: A one-step Nash approach, Proceedings of the 39th International Conference on Decision and Control, Los Angeles, CA, USA, pp. 2272–2277.
[12] Hollinger, G., Singh, S., Djugash, J. and Kehagias, A. (2009). Efficient multi-robot search for a moving target, International Journal of Robotics Research 28(2): 201–219.
[13] Isaacs, R. (1965). Differential Games: A Mathematical Theory With Applications to Warfare and Pursuit, Control and Optimization, Academic Press, New York, NY.
[14] Isler, V., Kannan, S. and Khanna, S. (2005). Randomized pursuit-evasion in a polygonal environment, IEEE Transactions on Robotics 21(5): 864–875.
[15] Jung, B. and Sukhatme, G. (2002). Tracking targets using multiple robots: The effect of environment occlusion, Autonomous Robots 13(3): 191–205.
[16] Kowalczuk, Z. and Czubenko, M. (2011). Intelligent decision-making system for autonomus robots, International Journal and Applied Mathematics and Computer Science 21(4): 671–684, DOI: 10.2478/v10006-011-0053-7.
[17] LaValle, S.M. (2006). Planning Algorithms, Cambridge University Press, New York, NY.
[18] LaValle, S.M., González, H., Becker, C. and Latombe, J. (1997). Motion strategies for maintaining visibility of a moving target, Proceedings of the International Conference on Robotics and Automation, ICRA 1997, Albuquerque, NM, USA, pp. 731–736.
[19] Merz, A. (1971). The Homicidal Chauffeur: A Differential Game, Ph.D. thesis, Stanford University, Stanford, CA.
[20] Murrieta-Cid, R., Monroy, R., Hutchinson, S. and Laumond, J.-P. (2008). A complexity result for the pursuit-evasion game of maintaining visibility of a moving evader, Proceedings of the International Conference on Robotics and Automation, ICRA 2008, Pasadena, CA, USA, pp. 2657–2664.
[21] Murrieta-Cid, R., Muppirala, T., Sarmiento, A., Bhattacharya, S. and Hutchinson, S. (2007). Surveillance strategies for a pursuer with finite sensor range, International Journal of Robotics Research 26(3): 233–252.
[22] Murrieta-Cid, R., Ruiz, U., Marroquin, J., Laumond, J. and Hutchinson, S. (2011). Tracking an omnidirectional evader with a differential drive robot, Autonomous Robots 31(4): 345–366.
[23] Murrieta-Cid, R., Tovar, B. and Hutchinson, S. (2005). A sampling-based motion planning approach to maintain visibility of unpredictable targets, Autonomous Robots 19(3): 285–300.
[24] O’Kane, J. (2008). On the value of ignorance: Balancing tracking and privacy using a two-bit sensor, Proceedings of the International Workshop on the Algorithmic Foundations of Robotics, WAFR 2008, Guanajuato, Mexico, pp. 235–249.
[25] Parker, L. (2002). Distributed algorithms for multi-robot observation of multiple targets, Autonomous Robots 12(3): 231–255.
[26] Prodan, I., Olaru, S., Stoica, C. and Niculescu, S.-I. (2013). Predictive control for trajectory tracking and decentralized navigation of multi-agent formations, International Journal of Applied Mathematics and Computer Science 23(1): 91–102, DOI: 10.2478/amcs-2013-0008.
[27] Ruiz, U. and Murrieta-Cid, R. (2012). A homicidal differential drive robot, Proceedings of the International Conference on Robotics and Automation, ICRA 2012, St. Paul, MN, USA, pp. 3218–3225.
[28] Ruiz, U., Murrieta-Cid, R. and Marroquin, J. (2013). Time-optimal motion strategies for capturing an omnidirectional evader using a differential drive robot, IEEE Transactions on Robotics 29(5): 1180–1196.
[29] Sachs, S., LaValle, S. and Rajko, S. (2004). Visibility-based pursuit-evasion in an unknown planar environment, International Journal of Robotics Research 23(1): 3–26.
[30] Schwartz, J.T. and Sharir, M. (1983). On the piano movers’ problem. I: The case of a two-dimensional rigid polygon body moving amidst polygonal barriers, Communications on Pure and Applied Mathematics 36(3): 345–398.
[31] Skrzypczyk, K. (2005). Control of a team of mobile robots based on non-cooperative equilibria with partial coordination, International Journal of Applied Mathematics and Computer Science 15(1): 89–97.
[32] Suzuki, I. and Yamashita, M. (1992). Searching for a mobile intruder in a polygonal region, SIAM Journal on Computing 21(5): 863–888.
[33] Tekdas, O. and Yang, W.and Isler, V. (2010). Robotic routers: Algorithms and implementation, International Journal of Robotics Research 29(1): 110–126.
[34] Tovar, B. and LaValle, S. (2008). Visibility-based pursuit-evasion with bounded speed, International Journal of Robotics Research 27(11–12): 1350–1360.
[35] Vidal, R., Shakernia, O., Jin, H., Hyunchul, D. and Sastry, S. (2002). Probabilistic pursuit-evasion games: Theory, implementation, and experimental evaluation, IEEE Transactions on Robotics and Automation 18(5): 662–669.