Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_1_a7, author = {Janiszowski, K. B.}, title = {Approximation of a linear dynamic process model using the frequency approach and a non-quadratic measure of the model error}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {99--109}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a7/} }
TY - JOUR AU - Janiszowski, K. B. TI - Approximation of a linear dynamic process model using the frequency approach and a non-quadratic measure of the model error JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 99 EP - 109 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a7/ LA - en ID - IJAMCS_2014_24_1_a7 ER -
%0 Journal Article %A Janiszowski, K. B. %T Approximation of a linear dynamic process model using the frequency approach and a non-quadratic measure of the model error %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 99-109 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a7/ %G en %F IJAMCS_2014_24_1_a7
Janiszowski, K. B. Approximation of a linear dynamic process model using the frequency approach and a non-quadratic measure of the model error. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 1, pp. 99-109. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a7/
[1] Deschrijver, D., Gustavsen, B. and Dhaene, T. (2007). Advancements in iterative methods for rational approximation in the frequency domain, IEEE Transactions on Power Delivery 22(3): 1633–1642.
[2] Deschrijver, D., Knockaert, L. and Dhaene, T. (2010). Improving robustness of vector fitting to outliers in data, IEEE Electronics Letters 46(17): 1200–1201.
[3] Deschrijver, D., Knockaert, L. and Dhaene, T. (2011). Robust macromodeling of frequency responses with outliers, 15th IEEE Workshop on Signal Propagation on Interconnects (SPI), Naples, Italy, pp. 21–24.
[4] Fiodorov, E. (1994). Least absolute values estimation: Computational aspects, IEEE Transactions on Automatic Control 39(3): 626–630.
[5] Grivet-Talocia, S., Bandinu, M. and Canavero, F. (2005). An automatic algorithm for equivalent circuit extraction from noisy frequency responses, 2005 International Symposium on Electromagnetic Compatibility, EMC 2005, Zurich, Switzerland, Vol. 1, pp. 163–168.
[6] Gustavsen, B. (2004). Wide band modeling of power transformers, IEEE Transactions on Power Delivery 19(1): 414–422.
[7] Gustavsen, B. (2006). Relaxed vector fitting algorithm for rational approximation of frequency domain responses, IEEE Workshop on Signal Propagation on Interconnects, Berlin, Germany, pp. 97–100.
[8] Gustavsen, B. and Mo, O. (2007). Interfacing convolution based linear models to an electromagnetic transients program, Conference on Power Systems Transients, Lyon, France, pp. 4–7.
[9] Gustavsen, B. and Semlyen, A. (1999). Rational approximation of frequency domain responses by vector fitting, IEEE Transactions on Power Delivery 14(3): 1052–1061.
[10] Janiszowski, K. (1998). Towards least sum of absolute errors estimation, IFAC Symposium on Large Scale Systems LSS’98, Patras, Greece, pp. 613–619.
[11] Kowalczuk, Z. and Kozłowski, J. (2011). Non-quadratic quality criteria in parameter estimation of continuous-time models, IET Control Theory Applications 5(13): 1494–1508.
[12] Kozłowski, J. (2003). Nonquadratic quality indices in estimation, approximation and control, IEEE Conference MMAR’2003, Międzyzdroje, Poland, pp. 277–282.
[13] Levy, E.C. (1959). Complex-curve fitting, IRE Transactions on Automatic Control AC-4(1): 37–43.
[14] Lima, A.C.S., Fernandes, A. and Carneiro, S., J. (2005). Rational approximation of frequency domain responses in the s and z planes, IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, Vol. 1, pp. 126–131.
[15] Ljung, L. and Söderström, T. (1987). Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA.
[16] Mohan, R., Choi, M.J., Mick, S., Hart, F., Chandrasekar, K., Cangellaris, A., Franzon, P. and Steer, M. (2004). Causal reduced-order modeling of distributed structures in a transient circuit simulator, IEEE Transactions on Microwave Theory and Techniques 52(9): 2207–2214.
[17] Pintelon, R. and Schoukens, J. (2004). System Identification: A Frequency Domain Approach, John Wiley Sons, New York, NY.
[18] Sreeram, V. and Agatokhlis, P. (1991). Model reduction of linear discrete-time systems via impulse response Gramians, International Journal on Control 53(1): 129–144.
[19] Unbehauen, H. and Rao, G. (1997). Identification of continuous-time systems: A tutorial, 11th IFAC Symposium on System Identification, Kitakyushu, Japan, pp. 1023–1049.
[20] Varricchio, S., Gomes, S. and Martins, N. (2004). Modal analysis of industrial system harmonics using the s-domain approach, IEEE Transactions on Power Delivery 19(3): 1232–1237.
[21] Wahlberg, B. and Mäkilä, P. (1996). On approximation of stable linear dynamical systems using Laguerre and Kautz functions, Automatica 32(5): 693–708.
[22] Young, P.C. (1966). Process parameter estimation and self adaptive control, in P.H. Hammnod (Ed.), Theory of Self Adaptive Control Systems, Vol. 1, Plenum Press, New York, NY, p. 118.