Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_1_a14, author = {Shaker, A. and H\"ullermeier, E.}, title = {Survival analysis on data streams: {Analyzing} temporal events in dynamically changing environments}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {199--212}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a14/} }
TY - JOUR AU - Shaker, A. AU - Hüllermeier, E. TI - Survival analysis on data streams: Analyzing temporal events in dynamically changing environments JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 199 EP - 212 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a14/ LA - en ID - IJAMCS_2014_24_1_a14 ER -
%0 Journal Article %A Shaker, A. %A Hüllermeier, E. %T Survival analysis on data streams: Analyzing temporal events in dynamically changing environments %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 199-212 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a14/ %G en %F IJAMCS_2014_24_1_a14
Shaker, A.; Hüllermeier, E. Survival analysis on data streams: Analyzing temporal events in dynamically changing environments. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 1, pp. 199-212. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a14/
[1] Aggarwal, C.C., Han, J., Wang, J. and Yu, P.S. (2003). A framework for clustering evolving data streams, Proceedings of the 29th International Conference on Very Large Data Bases, Berlin, Germany, pp. 81–92.
[2] Allan, J., Papka, R. and Lavrenko, V. (1998). On-line new event detection and tracking, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1998), Melbourne, Australia, pp. 37–45.
[3] Amati, G., Amodeo, G. and Gaibisso, C. (2012). Survival analysis for freshness in microblogging search, Proceedings of the 21st ACM International Conference on Information and Knowledge Management (CIKM-2012), Maui, HI, USA, pp. 2483–2486.
[4] Amodeo, G., Blanco, R. and Brefeld, U. (2011). Hybrid models for future event prediction, Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM-2011), Glasgow, UK, pp. 1981–1984.
[5] Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J. (2002). Models and issues in data stream systems, Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Madison, WI, USA, pp. 1–16.
[6] Beringer, J. and Hüllermeier, E. (2006). Online clustering of parallel data streams, Data and Knowledge Engineering 58(2): 180–204.
[7] Bottou, L. (1998). Online algorithms and stochastic approximations, in D. Saad (Ed.), Online Learning and Neural Networks, Cambridge University Press, Cambridge.
[8] Chen, G.,Wu, X. and Zhu, X. (2005). Sequential pattern mining in multiple streams, Proceedings of the 5th IEEE International Conference on Data Mining (ICDM), Houston, TX, USA, pp. 585–588.
[9] Cheon, S.-P., Kim, S., Lee, S.-Y. and Lee, C.-B. (2009). Bayesian networks based rare event prediction with sensor data, Knowledge-Based Systems 22(5): 336–343.
[10] Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing, Y. and Zdonik, S. (2003). Scalable distributed stream processing, Proceedings of CIDR-03: 1st Biennial Conference on Innovative Database Systems, Asilomar, CA, USA.
[11] Considine, J., Li, F., Kollios, G. and Byers, J. (2004). Approximate aggregation techniques for sensor databases, ICDE-04: 20th IEEE International Conference on Data Engineering, Boston, MA, USA, pp. 449–460.
[12] Cormode, G. and Muthukrishnan, S. (2005). What’s hot and what’s not: Tracking most frequent items dynamically, ACM Transactions on Database Systems 30(1): 249–278.
[13] Cox, D. (1972). Regression models and life tables, Journal of the Royal Statistical Society B 34(2): 187–220.
[14] Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data, Chapman Hall, London.
[15] Das, A., Gehrke, J. and Riedewald, M. (2003). Approximate join processing over data streams, Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, San Diego, CA, USA, pp. 40–51.
[16] Domingos, P. and Hulten, G. (2003). A general framework for mining massive data streams, Journal of Computational and Graphical Statistics 12(4): 945–949.
[17] Gaber, M.M., Zaslavsky, A. and Krishnaswamy, S. (2005). Mining data streams: A review, ACM SIGMOD Record 34(1): 18–26.
[18] Gama, J. (2012). A survey on learning from data streams: Current and future trends, Progress in Artificial Intelligence 1(1): 45–55.
[19] Gama, J. and Gaber, M.M. (2007). Learning from Data Streams, Springer-Verlag, Berlin/New York, NY.
[20] Garofalakis, M., Gehrke, J. and Rastogi, R. (2002). Querying and mining data streams: You only get one look, Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, Madison, WI, USA, pp. 635–635.
[21] Golab, L. and Tamer, M. (2003). Issues in data stream management, ACM SIGMOD Record 32(2): 5–14.
[22] Hulten, G., Spencer, L. and Domingos, P. (2001). Mining time-changing data streams, Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, pp. 97–106.
[23] Ikonomovska, E., Gama, J. and Dzeroski, S. (2011). Learning model trees from evolving data streams, Data Mining and Knowledge Discovery 23(1): 128–168.
[24] Krizanovic, K., Galic, Z. and Baranovic, M. (2011). Data types and operations for spatio-temporal data streams, IEEE International Conference on Mobile Data Management (MDM), Luleå, Sweden, pp. 11–14.
[25] Li, R., Lei, K.H., Khadiwala, R. and Chang, K.C.-C. (2012). Tedas: A twitter-based event detection and analysis system, Proceedings of the IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA, pp. 1273–1276.
[26] Oliveira, M. and Gama, J. (2012). A framework to monitor clusters evolution applied to economy and finance problems, Intelligent Data Analysis 16(1): 93–111.
[27] Radinsky, K. and Horvitz, E. (2013). Mining the web to predict future events, Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM 2013), Rome, Italy, pp. 255–264.
[28] Sakaki, T., Okazaki, M. and Matsuo, Y. (2013). Tweet analysis for real-time event detection and earthquake reporting system development, IEEE Transactions on Knowledge and Data Engineering 25(4): 919–931.
[29] Weng, J. and Lee, B.-S. (2011). Event detection in twitter, Proceedings of the 5th International Conference on Weblogs and Social Media (ICWSM 2011), Barcelona, Spain.
[30] Yang, Y., Pierce, T. and Carbonell, J.G. (1998). A study of retrospective and on-line event detection, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1998), Melbourne, Australia, pp. 28–36.
[31] Zadeh, L. (1965). Fuzzy sets, Information and Control 8(3): 338–353.
[32] Zupan, B., Demšar, J., Kattan, M.W., Beck, J.R. and Bratko, I. (2000). Machine learning for survival analysis: A case study on recurrence of prostate cancer, Artificial Intelligence in Medicine 20(1): 59–75.