Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_1_a12, author = {P{\l}awiak, P. and Tadeusiewicz, R.}, title = {Approximation of phenol concentration using novel hybrid computational intelligence methods}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {165--181}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a12/} }
TY - JOUR AU - Pławiak, P. AU - Tadeusiewicz, R. TI - Approximation of phenol concentration using novel hybrid computational intelligence methods JO - International Journal of Applied Mathematics and Computer Science PY - 2014 SP - 165 EP - 181 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a12/ LA - en ID - IJAMCS_2014_24_1_a12 ER -
%0 Journal Article %A Pławiak, P. %A Tadeusiewicz, R. %T Approximation of phenol concentration using novel hybrid computational intelligence methods %J International Journal of Applied Mathematics and Computer Science %D 2014 %P 165-181 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a12/ %G en %F IJAMCS_2014_24_1_a12
Pławiak, P.; Tadeusiewicz, R. Approximation of phenol concentration using novel hybrid computational intelligence methods. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 1, pp. 165-181. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a12/
[1] Antonelli, M., Ducange, P., Lazzerini, B. and Marcelloni, F. (2009). Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework, International Journal of Approximate Reasoning 50(7): 1066–1080.
[2] Aydogan, E., Karaoglan, I. and Pardalos, P. (2012). hGA: Hybrid genetic algorithm in fuzzy rule-based classification systems for high-dimensional problems, Applied Soft Computing 12(2): 800–806.
[3] Benrekia, F., Attari, M. and Bermak, A. (2009). FPGA implementation of a neural network classifier for gas sensor array applications, Proceedings of the 6th IEEE International Multi-Conference on Systems, Signals and Devices, Djerba, Tunisia.
[4] Cevoli, C., Cerretani, L., Gori, A., Caboni, M., Gallina, T., Toschi and Fabbri, A. (2011). Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC–MS analysis of volatile compounds, Food Chemistry 129(3): 1315–1319.
[5] Chandra, R., Frean, M., Zhang, M. and Omlin, C. (2011). Encoding subcomponents in cooperative co-evolutionary recurrent neural networks, Neurocomputing 74(17): 3223–3234.
[6] Cheng, M.-Y., Tsai, H.-C. and Sudjono, E. (2010). Evolutionary fuzzy hybrid neural network for project cash flow control, Engineering Applications of Artificial Intelligence 23(4): 604–613.
[7] Cheshmehgaz, H., Haron, H., Kazemipour, F. and Desa, M. (2012). Accumulated risk of body postures in assembly line balancing problem and modeling through a multi-criteria fuzzy-genetic algorithm, Computers Industrial Engineering 63(2): 503–512.
[8] Czogała, E. and Łęski, J. (2000). Fuzzy and Neuro-Fuzzy Intelligent Systems, Physica-Verlag, Springer-Verlag Com., Heidelberg/New York, NY.
[9] Font, J., Manrique, D. and Rios, J. (2010). Evolutionary construction and adaptation of intelligent systems, Expert Systems with Applications 37(12): 7711–7720.
[10] Ghasemi-Varnamkhasti, M., Mohtasebi, S., Siadat, M., Lozano, J., Ahmadi, H., Razavi, S. and Dicko, A. (2011). Aging fingerprint characterization of beer using electronic nose, Sensors and Actuators B: Chemical 159(1): 51–59.
[11] Ihokura, K. and Watson, J. (1994). The Stannic Oxide Gas Sensor: Principles and Applications, CRC Press, Boca Raton, FL.
[12] Lin, C.-J. and Chen, C.-H. (2011). Nonlinear system control using self-evolving neural fuzzy inference networks with reinforcement evolutionary learning, Applied Soft Computing 11(8): 5463–5476.
[13] Maziarz, W. and Pisarkiewicz, T. (2008). Gas sensors in a dynamic operation mode, Measurement Science and Technology 19(5): 055205.
[14] Maziarz, W., Potempa, P., Sutor, A. and Pisarkiewicz, T. (2003). Dynamic response of a semiconductor gas sensor analysed with the help of fuzzy logic, Thin Solid Films 436(1): 127–131.
[15] M.O.S., A. (2002). Technical note, Toulouse, ND, www.alpha-mos.com.
[16] Nakata, S., Neya, K. and Takemura, K. (2001). Non-linear dynamic responses of a semiconductor gas sensor: Competition effect on the sensor responses to gaseous mixtures, Thin Solid Films 391(2): 293–298.
[17] Nomura, T., Fujimori, Y., Kitora, M., Matsuura, Y. and Aso, I. (1998). Battery operated semiconductor CO sensor using pulse heating method, Sensors and Actuators B 52(1): 90–95.
[18] Patan, K. and Patan, M. (2011). Optimal training strategies for locally recurrent neural networks, Journal of Artificial Intelligence and Soft Computing Research 1(22): 103–114.
[19] Romain, A.-C., Nicolas, J.,Wiertz, V., Maternova, J. and Andre, P. (2000). Use of a simple tin oxide sensor array to identify five malodours collected in the field, Sensors and Actuators B: Chemical 62(1): 73–79.
[20] Rutkowski, L. (2008). Computational Intelligence: Methods and Techniques, Springer, Berlin.
[21] Shahlaei, M., Madadkar-Sobhani, A., Saghaie, L. and Fassihi, A. (2012). Application of an expert system based on Genetic Algorithm-Adaptive Neuro-Fuzzy Inference System (GA-ANFIS) in QSAR of cathepsin K inhibitors, Expert Systems with Applications 39(6): 6182–6191.
[22] Snopok, B. and Kruglenko, I. (2002). Multisensor systems for chemical analysis: State-of-the-art in electronic nose technology and new trends in machine olfaction, Thin Solid Films 418(1): 21–41.
[23] Su, C.-L.,Yang, S. and Huang,W. (2011). A two-stage algorithm integrating genetic algorithm and modified Newton method for neural network training in engineering systems, Expert Systems with Applications 38(10): 12189–12194.
[24] Tabor, Z. (2009). Statistical estimation of the dynamics of watershed dams, International Journal of Applied Mathematics and Computer Science 19(2): 349–360, DOI: 10.2478/v10006-009-0030-6.
[25] Tabor, Z. (2010). Surrogate data: A novel approach to object detection, International Journal of Applied Mathematics and Computer Science 20(3): 545–553, DOI: 10.2478/v10006-010-0040-4.
[26] Tadeusiewicz, R. (2010a). New Trends in Neurocybernetics, Computer Methods in Materials Science 10(1): 1–7.
[27] Tadeusiewicz, R. (2010b). Place and role of intelligent systems in computer science, Computer Methods in Materials Science 10(4): 193–206.
[28] Tadeusiewicz, R. (2011a). How intelligent should be system for image analysis? in H. Kwasnicka and L.C. Jain (Eds.), Innovations in Intelligent Image Analysis, Studies in Computational Intelligence, Vol. 339, Springer-Verlag, Berlin/Heidelberg/New York, NY.
[29] Tadeusiewicz, R. (2011b). Introduction to intelligent systems, in B.M. Wilamowski and J.D. Irvin (Eds.), The Industrial Electronics Handbook—Intelligent Systems, CRC Press, Boca Raton, FL.
[30] Tadeusiewicz, R. and Morajda, J. (2012). Artificial intelligence methods, in P. Lula and G. Paliwoda-Pekosz (Eds.), Analysis and Data Processing Computer Methods, Cracow University of Economics Publishing House, Cracow.
[31] Tallon-Ballesteros, A. and Hervas-Martinez, C. (2011). A two-stage algorithm in evolutionary product unit neural networks for classification, Expert Systems with Applications 38(1): 743–754.
[32] Tong, D. and Schierz, A. (2011). Hybrid genetic algorithm-neural network: Feature extraction for unpreprocessed microarray data, Artificial Intelligence in Medicine 53(1): 47–56.
[33] Yang, S.-H. and Chen, Y.-P. (2012). An evolutionary constructive and pruning algorithm for artificial neural networks and its prediction applications, Neurocomputing 86(1): 140–149.
[34] Yu, H., Wang, J., Xiao, H. and Liu, M. (2009). Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals, Sensors and Actuators B: Chemical 140(2): 378–382.
[35] Zhang, L., Tian, F., Kadri, C., Pei, G., Li, H. and Pan, L. (2011). Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose, Sensors and Actuators B: Chemical 160(1): 760–770.