Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2014_24_1_a11, author = {Sabo, K.}, title = {Center-based l\protect\textsubscript{1}-clustering method}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {151--163}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a11/} }
Sabo, K. Center-based l1-clustering method. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) no. 1, pp. 151-163. http://geodesic.mathdoc.fr/item/IJAMCS_2014_24_1_a11/
[1] Angulo, J. and Serra, J. (2007). Modelling and segmentation of colour images in polar representations, Image and Vision Computing 25(4): 475–495.
[2] Äyrämö, S. (2006). Knowledge Mining Using Robust Clustering, Ph.D. thesis, University of Jyväskylä, Jyväskylä.
[3] Bagirov, A.M. and Ugon, J. (2005). An algorithm for minimizing clustering functions, Optimization 54(4–5): 351–368.
[4] Bagirov, A.M., Ugon, J. and Webb, D. (2011). Fast modified global k-means algorithm for incremental cluster construction, Pattern Recognition 44(4): 886–876.
[5] Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA.
[6] Boyd, D.L. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.
[7] Chaovalitwongse, W.A., Butenko, S. and Pardalos, P.M., (Eds.) (2009). Clustering Challenges in Biological Networks, World Scientific, London.
[8] Choulakian, V. (2001). Robust q-mode principal component analysis in L1, Computational Statistics Data Analysis, 37(2): 135–150.
[9] Clarke, F. H., (1990). Optimization and Nonsmooth Analysis, SIAM, Philadelphia, PA.
[10] Cominetti, R. and Michelot, C. (1997 ). Sufficient conditions for coincidence in l1-minisum multifacility location problems, Operations Research Letters 20(4): 179–185.
[11] Cord, A., Ambroise, C. and Cocquerez, J.-P. (2006 ). Feature selection in robust clustering based on Laplace mixture, Pattern Recognition Letters 27(6): 627–635.
[12] Cupec, R., Grbić, R., Sabo, K. and Scitovski, R. (2009). Three points method for searching the best least absolute deviations plane, Applied Mathematics and Computation 215(3): 983–994.
[13] Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification, Wiley, New York, NY.
[14] Finkel, D.E. and Kelley, C.T. (2006). Additive scaling and the DIRECT algorithm, Journal of Global Optimization 36(4): 597–608.
[15] Floudas, C.A. and Gounaris, C.E. (2009). A review of recent advances in global optimization, Journal of Global Optimization 45(4): 3–38.
[16] Frąckiewicz, M. and Palus, H. (2011). KHM clustering techique as a segmentation method for endoscopic colour images, International Journal of Applied Mathematics and Computer Science 21(1): 203–209, DOI: 10.2478/v10006-011-0015-0.
[17] Gan, G., Ma, C. and Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications, SIAM, Philadelphia, PA.
[18] Grbić, R., Nyarko, E.K. and Scitovski, R. (2012). A modification of the direct method for Lipschitz global optimization for a symmetric function, Journal of Global Optimization, 57(4): 1193–1212, DOI: 10.1007/s10898-012-0020-3.
[19] Grbić, R., Scitovski, K., Sabo, K. and Scitovski, R. (2013). Approximating surfaces by the moving least absolute deviations method, Applied Mathematics and Computation 219(9): 4387–4399.
[20] Gurwitz, C. (1990). Weighted median algorithms for l1 approximation, BIT 30(2): 301–310.
[21] Hathaway, R.J. and Bezdek, J.C. (2001). Fuzzy c-means clustering of incomplete data, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 31(5): 735–744.
[22] Hubert, L. and Arabie, P. (1985). Comparing partitions, Journal of Classification 2(1): 193–218.
[23] Jain, A. (2010). 50 years beyond k-means, Pattern Recognition Letters 31(8): 651–666.
[24] Jajuga, K. (1987). A clustering method based on the L1-norm, Computational Statistics Data Analysis 5(4): 357–371.
[25] Jajuga, K. (1991). L1-norm based fuzzy clustering, Fuzzy Sets and Systems 39(1): 43–50.
[26] Iyigun, C. (2007). Probabilistic Distance Clustering, Ph.D. thesis, Graduate School, Rutgers, New Brunswick, NJ.
[27] Jones, D.R., Perttunen, C.D. and Stuckman, B.E. (1993). Lipschitzian optimization without the Lipschitz constant, Journal of Optimization Theory and Applications 79(1): 157–181.
[28] Jörnsten, R. (2004). Clustering and classification based on the L1 data depth, Journal of Multivariate Analysis 90(1): 67–89.
[29] Kogan, J. (2007). Introduction to Clustering Large and High-Dimensional Data, Cambridge University Press, Cambridge.
[30] Leisch, F. (2006). A toolbox for k-centroids cluster analysis, Computational Statistics Data Analysis 51(2): 526–544.
[31] Li, X. Hu, W., Wang, H. and Zhang, Z. (2010). Linear discriminant analysis using rotational invariant L1 norm, Neurocomputing 73(13–15): 2571–2579.
[32] Scitovski, R. and Scitovski, S. (2013). A fast partitioning algorithm and its application to earthquake investigation, Computers and Geosciences 59(1): 124–131.
[33] Simiński, K. (2012). Neuro-rough-fuzzy approach for regression modelling from missing data, International Journal of Applied Mathematics and Computer Science 22(2): 461–476, DOI: 10.2478/v10006-012-0035-4.
[34] Späth, H. (1976). L1-cluster analysis, Computing 16(4): 379–387.
[35] Späth, H. (1987). Using the L1-norm within cluster analysis, in Y. Dodge (Ed.), Proceedings of the First International Conference on Statistical Data Analysis Based on the L1-Norm and Related Methods, University of Neuchatel/Switzerland, August 31–September 04, 1987, Elsevier, Amsterdam, pp. 427–434.
[36] Malinen, M.I. and Fränti, P. (2012). Clustering by analytic functions, Information Sciences 217(1): 31–38.
[37] Meng, D., Zhao, Q and Xu, Z. (2012). Improve robustness of sparse PCA by L1-norm maximization, Pattern Recognition 45(1): 487–497.
[38] Pintér, J.D. (1996). Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications), Kluwer Academic Publishers, Dordrecht.
[39] Ruszczynski, A (2006). Nonlinear Optimization, Princeton University Press, Princeton/Oxford, NJ.
[40] Sabo, K. and Scitovski, R. (2008). The best least absolute deviations line—properties and two efficient methods, ANZIAM Journal 50(2): 185–198.
[41] Sabo, K., Scitovski, R. and Vazler, I. (2011). Searching for a best LAD-solution of an overdetermined system of linear equations motivated by searching for a best LAD-hyperplane on the basis of given data, Journal of Optimization Theory and Applications 149(2): 293–314.
[42] Sabo, K., Scitovski, R. and Vazler, I. (2012). One-dimensional center-based l1-clustering method, Optimization Letters 7(1): 5–22.
[43] Sabo, K., Scitovski, R., Vazler, I. and Zekić-Sušac, M. (2011). Mathematical models of natural gas consumption, Energy Conversion and Management 52(3): 1721–1727.
[44] Teboulle, M. (2007). A unified continuous optimization framework for center-based clustering methods, Journal of Machine Learning Research 8(1): 65–102.
[45] Vardi, Y., Zhang, C. H. (2000). The multivariate L1-median and associated data depth, Proceedings of the National Academy of Sciences, United States of America 97(4): 1423–1426.
[46] Vazler, I., Sabo, K. and Scitovski, R. (2012). Weighted median of the data in solving least absolute deviations problems, Communications in Statistics—Theory and Methods 41(8): 1455–1465.
[47] Zhang, J., Peng, L., Zhao, X. and Kuruoglu E.E. (2012 ). Robust data clustering by learning multi-metric lq-norm distances, Expert Systems with Applications 39(1): 335–349.