Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_4_a9, author = {Stanimirovi\'c, P. and Miladinovi\'c, M. and Stojanovi\'c, I. and Miljkovi\'c, S.}, title = {Application of the partitioning method to specific {Toeplitz} matrices}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {809--821}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a9/} }
TY - JOUR AU - Stanimirović, P. AU - Miladinović, M. AU - Stojanović, I. AU - Miljković, S. TI - Application of the partitioning method to specific Toeplitz matrices JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 809 EP - 821 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a9/ LA - en ID - IJAMCS_2013_23_4_a9 ER -
%0 Journal Article %A Stanimirović, P. %A Miladinović, M. %A Stojanović, I. %A Miljković, S. %T Application of the partitioning method to specific Toeplitz matrices %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 809-821 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a9/ %G en %F IJAMCS_2013_23_4_a9
Stanimirović, P.; Miladinović, M.; Stojanović, I.; Miljković, S. Application of the partitioning method to specific Toeplitz matrices. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 4, pp. 809-821. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a9/
[1] Banham, M.R. and Katsaggelos, A.K. (1997). Digital image restoration, IEEE Signal Processing Magazine 14(2): 24–41.
[2] Ben-Israel, A. and Grevile, T.N.E. (2003). Generalized Inverses, Theory and Applications, Second Edition, Canadian Mathematical Society/Springer, New York, NY.
[3] Bhimasankaram, P. (1971). On generalized inverses of partitioned matrices, Sankhya: The Indian Journal of Statistics, Series A 33(3): 311–314.
[4] Bovik, A. (2005). Handbook of Image and Video Processing, Elsevier Academic Press, Burlington.
[5] Bovik, A. (2009). The Essential Guide to the Image Processing, Elsevier Academic Press, Burlington.
[6] Chantas, G.K., Galatsanos, N.P. and Woods, N.A. (2007). Super-resolution based on fast registration and maximum a posteriori reconstruction, IEEE Transactions on Image Processing 16(7): 1821–1830.
[7] Chountasis, S., Katsikis, V.N. and Pappas, D. (2009a). Applications of the Moore–Penrose inverse in digital image restoration, Mathematical Problems in Engineering 2009, Article ID: 170724, DOI: 10.1155/2010/750352.
[8] Chountasis, S., Katsikis, V.N. and Pappas, D. (2009b). Image restoration via fast computing of the Moore–Penrose inverse matrix, 16th International Conference on Systems, Signals and Image Processing, IWSSIP 2009,Chalkida, Greece, Article number: 5367731.
[9] Chountasis, S., Katsikis, V.N. and Pappas, D. (2010). Digital image reconstruction in the spectral domain utilizing the Moore–Penrose inverse, Mathematical Problems in Engineering 2010, Article ID: 750352, DOI: 10.1155/2010/750352.
[10] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2001). Introduction to Algorithms, Second Edition, MIT Press, Cambridge, MA.
[11] Courrieu, P. (2005). Fast computation of Moore–Penrose inverse matrices, Neural Information Processing—Letters and Reviews 8(2): 25–29.
[12] Craddock, R.C., James, G.A., Holtzheimer, P.E. III, Hu, X.P. and Mayberg, H.S. (2012). A whole brain FMRI atlas generated via spatially constrained spectral clustering, Human Brain Mapping 33(8): 1914–1928.
[13] Dice, L.R. (1945). Measures of the amount of ecologic association between species, Ecology 26(3): 297–302.
[14] Górecki, T. and Łuczak, M. (2013). Linear discriminant analysis with a generalization of the Moore–Penrose pseudoinverse, International Journal of Applied Mathematics and Computer Science 23(2): 463–471, DOI: 10.2478/amcs-2013-0035.
[15] Graybill, F. (1983). Matrices with Applications to Statistics, Second Edition, Wadsworth, Belmont, CA.
[16] Greville, T.N.E. (1960). Some applications of the pseudo-inverse of matrix, SIAM Review 3(1): 15–22.
[17] Hansen, P.C., Nagy, J.G. and O’Leary, D.P. (2006). Deblurring Images: Matrices, Spectra, and Filtering, SIAM, Philadelphia, PA.
[18] Hillebrand, M. and Muller, C.H. (2007). Outlier robust corner-preserving methods for reconstructing noisy images, The Annals of Statistics 35(1): 132–165.
[19] Hufnagel, R.E. and Stanley, N.R. (1964). Modulation transfer function associated with image transmission through turbulence media, Journal of the Optical Society of America 54(1): 52–60.
[20] Kalaba, R.E. and Udwadia, F.E. (1993). Associative memory approach to the identification of structural and mechanical systems, Journal of Optimization Theory and Applications 76(2): 207–223.
[21] Kalaba, R.E. and Udwadia, F.E. (1996). Analytical Dynamics: A New Approach, Cambridge University Press, Cambridge.
[22] Karanasios, S. and Pappas, D. (2006). Generalized inverses and special type operator algebras, Facta Universitatis, Mathematics and Informatics Series 21(1): 41–48.
[23] Katsikis, V.N., Pappas, D. and Petralias, A. (2011). An improved method for the computation of the Moore–Penrose inverse matrix, Applied Mathematics and Computation 217(23): 9828–9834.
[24] Katsikis, V. and Pappas, D. (2008). Fast computing of the Moore–Penrose inverse matrix, Electronic Journal of Linear Algebra 17(1): 637–650.
[25] MathWorks (2009). Image Processing Toolbox User’s Guide, The Math Works, Inc., Natick, MA.
[26] MathWorks (2010). MATLAB 7 Mathematics, The Math Works, Inc., Natick, MA.
[27] Noda, M.T., Makino, I. and Saito, T. (1997). Algebraic methods for computing a generalized inverse, ACM SIGSAM Bulletin 31(3): 51–52.
[28] Penrose, R. (1956). On a best approximate solution to linear matrix equations, Proceedings of the Cambridge Philosophical Society 52(1): 17–19.
[29] Prasath, V.B.S. (2011). A well-posed multiscale regularization scheme for digital image denoising, International Journal of Applied Mathematics and Computer Science 21(4): 769–777, DOI: 10.2478/v10006-011-0061-7.
[30] Rao, C. (1962). A note on a generalized inverse of a matrix with applications to problems in mathematical statistics, Journal of the Royal Statistical Society, Series B 24(1): 152–158.
[31] Röbenack, K. and Reinschke, K. (2011). On generalized inverses of singular matrix pencils, International Journal of Applied Mathematics and Computer Science 21(1): 161–172, DOI: 10.2478/v10006-011-0012-3.
[32] Schafer, R.W., Mersereau, R.M. and Richards, M.A. (1981). Constrained iterative restoration algorithms, Proceedings of the IEEE 69(4): 432–450.
[33] Shinozaki, N., Sibuya, M. and Tanabe, K. (1972). Numerical algorithms for the Moore–Penrose inverse of a matrix: Direct methods, Annals of the Institute of Statistical Mathematics 24(1): 193–203.
[34] Smoktunowicz, A. and Wróbel, I. (2012). Numerical aspects of computing the Moore–Penrose inverse of full column rank matrices, BIT Numerical Mathematics 52(2): 503–524.
[35] Stojanović, I., Stanimirović, P. and Miladinović, M. (2012). Applying the algorithm of Lagrange multipliers in digital image restoration, Facta Universitatis, Mathematics and Informatics Series 27(1): 41–50.
[36] Udwadia, F.E. and Kalaba, R.E. (1997). An alternative proof for Greville’s formula, Journal of Optimization Theory and Applications 94(1): 23–28.
[37] Udwadia, F.E. and Kalaba, R.E. (1999). General forms for the recursive determination of generalized inverses: Unified approach, Journal of Optimization Theory and Applications 101(3): 509–521.