Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_4_a5, author = {Liao, S. and Yang, W.}, title = {On the dynamics of a vaccination model with multiple transmission ways}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {761--772}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a5/} }
TY - JOUR AU - Liao, S. AU - Yang, W. TI - On the dynamics of a vaccination model with multiple transmission ways JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 761 EP - 772 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a5/ LA - en ID - IJAMCS_2013_23_4_a5 ER -
%0 Journal Article %A Liao, S. %A Yang, W. %T On the dynamics of a vaccination model with multiple transmission ways %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 761-772 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a5/ %G en %F IJAMCS_2013_23_4_a5
Liao, S.; Yang, W. On the dynamics of a vaccination model with multiple transmission ways. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 4, pp. 761-772. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a5/
[1] Anderson, R.M. and May, R.M.(1990). Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford.
[2] Arino, J.C., McCluskey, C. and van den Driessche P. (2003). Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM Journal on Applied Mathematics, 64(1): 260–276.
[3] Blayneh, K.W., Gumel, A.B., Lenhart, S. and Clayton, T. (2010). Backward bifurcation and optimal control in transmission dynamics of West Nile Virus, Bulletin of Mathematical Biology 72(4): 1006–1028.
[4] Brauer, F. (2004). Backward bifurcations in simple vaccination models, Journal of Mathematical Analysis and Application 298(2): 418–431.
[5] Blower, S.M. and Dowlatabadi, H. (1994). Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, International Statistical Review 62(2): 229–243.
[6] Buonomo, B. and Lacitignola, D. (2011). On the backward bifurcation of a vaccination model with nonlinear incidence, Nonlinear Analysis: Modelling and Control 16(1): 30–46.
[7] Buonomo, B. and Lacitignola, D. (2008). On the dynamics of an SEIR epidemic model with a convex incidence rate, Ricerche di Matematica 57(2): 261–281.
[8] Buonomo, B. and Lacitignola, D. (2010). Analysis of a tuberculosis model with a case study in Uganda, Journal of Biological Dynamics 4(6): 571–593.
[9] Castillo-Chavez, C. and Song, B.(2004). Dynamical models of tubercolosis and their applications, Mathematical Biosciences and Engineering 1(2): 361–404.
[10] Capasso, V. and Paveri-Fontana, S.L. (1979). A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue D’Epidémiologie de Santé Publique 27(2): 121–132.
[11] Chitnis, N., Cushing, J.M. and Hyman, J.M.(2006). Bifurcation analysis of a mathematical model for malaria transmission, SIAM Journal of Applied Mathematics 67(1): 24–45.
[12] Chitnis, N., Cushing, J.M. and Cushing, J.M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bulletin of Mathematical Biology 79(5): 1272–1296.
[13] Codec¸o, C.T. (2001). Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infectious Diseases, 1:1.
[14] Dietz, K. and Schenzle, D.(1985). Mathematical models for infectious disease statistics, in A.C. Atkinson and S.E. Fienberg (Eds.), Centenary Volume of the International Statistical Institute, Springer-Verlag, Berlin, pp. 167–204.
[15] Feckan, M. (2001). Criteria on the nonexistence of invariant Lipschitz submanifolds for dynamical systems, Journal of Differential Equations 174(2): 392–419.
[16] Gani, J., Yakowitz, S. and Blount, M. (1997). The spread and quarantine of HIV infection in a prison system, SIAM Journal on Applied Mathematics 57(6): 1510–1530.
[17] Gumel, A.B. and Moghadas, S.M. (2003). A qualitative study of a vaccination model with non-linear incidence, Applied Mathematics and Computation 143(2–3): 409–419.
[18] Hartley, D.M., Morris, J.G. and Smith, D.L. (2006). Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics?, PLoS Medicine 3(1): 63–69.
[19] Hethcote, H.W. (2000). The mathematics of infectious diseases, SIAM Review 42(4):599–653.
[20] Korn, G.A. and Korn, T.M. (2000). Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for References and Review, Dover Publications, Mineola, NY.
[21] Kribs-Zaleta, C.M. (1999). Structured models for heterosexual disease transmission, Mathematical Biosciences 160(1): 83–108.
[22] Kribs-Zaleta, C.M. and Martchevab, M. (2002). Vaccination strategies and backward bifurcation in an age-since-infection structured model, Mathematical Biosciences 177/178: 317–332.
[23] Kribs-Zaleta, C.M. and Velasco-Hernandez, J.X. (2000). A simple vaccination model with multiple endemic states, Mathematical Biosciences 164(2): 183–201.
[24] Li, G. and Zhen, J. (2005). Global stability of an SEI epidemic model with general contact rate, Chaos Solitons Fractals 23(3): 997–1004.
[25] Liao, S. and Wang, J. (2011). Stability analysis and application of a mathematical cholera model, Mathematical Biosciences and Engineering 8(3):733–752.
[26] Liu, X. and Wang, C. (2010). Bifurcation of a predator-prey model with disease in the prey, Nonlinear Dynamics 62(4):841–850.
[27] Marino, S., Hogue, I., Ray, C.J. and Kirschner, D.E.(2008). A methodology for performing global uncertainty and sensitivity analysis in system biology, Journal of Theoretical Biology 254(1): 178–196.
[28] Moghadas, S.M. and Gumel, A.B. (2002). Global stability of a two-stage epidemic model with generalized non-linear incidence, Mathematics and Computers in Simulation 60(1–2): 107–118.
[29] Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D.L. and Morris, J.G. (2011). Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe, Proceedings of the National Academy of Sciences of the United States of America 108(21): 8767–8772.
[30] Samsuzzoha, M.D., Singh, M. and Lucy, D. (2012). A numerical study on an influenza epidemic model with vaccination and diffusion, Applied Mathematics and Computation 219(1): 122–141.
[31] Song, X., Jiang, Y. and Wei, H.(2009). Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays, Applied Mathematics and Computation 214(2): 381–390.
[32] Szymańska, Z. (2013). Analysis of immunotherapy models in the context of cancer dynamics, International Journal of Applied Mathematics and Computer Science 13(3): 407–418.
[33] Sanchez, L.A. (2010). Existence of periodic orbits for high-dimensional autonomous systems, Journal of Mathematical Analysis and Applications 363(2): 409–418.
[34] Tien, J.H. and Earn, D.J.D. (2010). Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bulletin of Mathematical Biology 72(6): 1502–1533.
[35] Van den Driessche, P. and Watmough, J.(2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180(1–2): 29–48.
[36] Van den Driessche, P. and Watmough, J. (2000). A simple SIS epidemic model with a backward bifurcation, Journal of Mathematical Biology 40(6): 525–540.
[37] Vynnycky, E., Trindall, A. and Mangtani, P.(2007). Estimates of the reproduction numbers of Spanish influenza using morbidity data, International Journal of Epidemiology 36(4): 881–889.
[38] Yildirim, A. and Cherruault, Y.(2009). Analytical approximate solution of a SIR epidemic model with constant vaccination strategy by homotopy perturbation method, Kybernetes 38(9): 1566–1575.
[39] Yu, H.G., Zhong, S.M., Agarwal, R.P. and Xiong L.L. (2010). Species permanence and dynamical behaviour analysis of an impulsively controlled ecological system with distributed time delay, Computers and Mathematics with Applications 59(2): 3824–3835.
[40] Zhang, X. and Liu, X. (2009). Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment, Nonlinear Analysis: Real World Applications 10(2): 565–575.
[41] Zhang, J. and Ma, Z. (2003). Global dynamics of an SEIR epidemic model with saturating contact rate, Mathematical Biosciences 185(1): 15–32.
[42] World Health Organization (2010). Zimbabwe, http://www.who.int/countries/zwe/en/.