Minimum energy control of positive continuous-time linear systems with bounded inputs
International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 4, pp. 725-730.

Voir la notice de l'article provenant de la source Library of Science

The minimum energy control problem for positive continuous-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of a solution to the problem are established. A procedure for solving the problem is proposed and illustrated with a numerical example.
Keywords: positive system, continuous time, minimum energy control, bounded inputs
Mots-clés : system dodatni, układ ciągły, sterowanie energooszczędne
@article{IJAMCS_2013_23_4_a2,
     author = {Kaczorek, T.},
     title = {Minimum energy control of positive continuous-time linear systems with bounded inputs},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {725--730},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a2/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Minimum energy control of positive continuous-time linear systems with bounded inputs
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2013
SP  - 725
EP  - 730
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a2/
LA  - en
ID  - IJAMCS_2013_23_4_a2
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Minimum energy control of positive continuous-time linear systems with bounded inputs
%J International Journal of Applied Mathematics and Computer Science
%D 2013
%P 725-730
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a2/
%G en
%F IJAMCS_2013_23_4_a2
Kaczorek, T. Minimum energy control of positive continuous-time linear systems with bounded inputs. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 4, pp. 725-730. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a2/

[1] Busłowicz M. (2008). Stability of linear continuous time fractional order systems with delays of the retarded type, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 319–324.

[2] Dzieliński A., Sierociuk D. and Sarwas G. (2009). Ultracapacitor parameters identification based on fractional order model, Proceedings of ECC’09, Budapest, Hungary.

[3] Dzieliński A. and Sierociuk D. (2008a). Stability of discrete fractional order state-space systems, Journal of Vibrations and Control 14(9/10): 1543–1556.

[4] Farina L. and Rinaldi S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY.

[5] Kaczorek T. (1992). Linear Control Systems, Research Studies Press/J.Wiley, New York, NY.

[6] Kaczorek T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London.

[7] Kaczorek T. (2008a). Fractional positive continuous-time systems and their reachability, International Journal of Applied Mathematics Computer Science 18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.

[8] Kaczorek T. (2008b) Practical stability of positive fractional discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 313–317.

[9] Kaczorek T. (2008c). Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal Européen des Systèmes Automatisés 42(6–8): 769–787.

[10] Kaczorek T. (2009). Asymptotic stability of positive fractional 2D linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(3): 289–292.

[11] Kaczorek T. (2011a) Controllability and observability of linear electrical circuits, Electrical Review 87(9a): 248–254.

[12] Kaczorek T. (2011b). Positivity and reachability of fractional electrical circuits, Acta Mechanica et Automatica 5(2): 42–51.

[13] Kaczorek T. (2011c). Positive linear systems consisting of n subsystems with different fractional orders, Transactions of IEEE: Circuits and Systems 58(6): 1203–1210.

[14] Kaczorek T. (2011d) Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm, Archive of Control Sciences 21(3): 287–298.

[15] Kaczorek T. (2012). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.

[16] Kaczorek T. (2013a) Minimum energy control of fractional positive continuous-time linear systems, Proceedings of the 18th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, NN 514638940.

[17] Kaczorek T. (2013b). Minimum Energy Control of Descriptor Positive Discrete-time Linear Systems, Compel, (in press).

[18] Kaczorek T. and Klamka J. (1986). Minimum energy control of 2D linear systems with variable coefficients, International Journal of Control 44(3): 645–650.

[19] Klamka J. (1991) Controllability of Dynamical Systems, Kluwer Academic Press, Dordrecht.

[20] Klamka J. (1983). Minimum energy control of 2D systems in Hilbert spaces, System Sciences 9(1–2): 33–42.

[21] Klamka J. (1976). Relative controllability and minimum energy control of linear systems with distributed delays in control, IEEE Transactions on Automatic Control 21(4): 594–595.

[22] Klamka J. (2010). Controllability and minimum energy control problem of fractional discrete-time systems, in D. Baleanu, Z.B. Guvenc and J.A. Tenreiro Machado (Eds.), New Trends in Nanotechology and Fractional Calculus, Springer-Verlag, New York, NY, pp. 503–509.

[23] Klamka J. (1993). Controllability of dynamical systems—a survey, Archives of Control Sciences 2(3–4): 281–307.

[24] Klamka J. (1977). Minimum energy control of discrete systems with delays in control, International Journal of Control 26(5): 737–744.