Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_4_a0, author = {Avdonin, S. and Choque Rivero, A. and de Teresa, L.}, title = {Exact boundary controllability of coupled hyperbolic equations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {701--710}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a0/} }
TY - JOUR AU - Avdonin, S. AU - Choque Rivero, A. AU - de Teresa, L. TI - Exact boundary controllability of coupled hyperbolic equations JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 701 EP - 710 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a0/ LA - en ID - IJAMCS_2013_23_4_a0 ER -
%0 Journal Article %A Avdonin, S. %A Choque Rivero, A. %A de Teresa, L. %T Exact boundary controllability of coupled hyperbolic equations %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 701-710 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a0/ %G en %F IJAMCS_2013_23_4_a0
Avdonin, S.; Choque Rivero, A.; de Teresa, L. Exact boundary controllability of coupled hyperbolic equations. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 4, pp. 701-710. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_4_a0/
[1] Alabau-Boussouira, F. (2003). A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM Journal on Control and Optimization 42(3): 871–906.
[2] Alabau-Boussouira, F. and Leautaud, M. (2011). Indirect controllability of locally coupled systems under geometric conditions, Comptes Rendus Mathematique 349(7–8): 395–400.
[3] Ammar-Kohdja, A., Benabdallah, M., González-Burgos, L. and de Teresa, L. (2011). Recent results on the controllability of coupled parabolic problems: A survey, Mathematical Control and Related Fields 1(3): 267-306.
[4] Avdonin, S.A. and Ivanov, S.A., (1995). Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New York, NY.
[5] Avdonin, S.A. and Ivanov, S.A. (2001). Exponential Riesz bases of subspaces and divided differences, St Petersburg Mathematical Journal 13(3): 339–351.
[6] Avdonin, S. and Moran, W. (2001a). Ingham-type inequalities and Riesz bases of divided differences, International Journal of Applied Mathematics and Computer Science 11(4): 803–820.
[7] Avdonin, S. and Moran, W. (2001b). Simultaneous control problems for systems of elastic strings and beams, Systems and Control Letters 44(2): 147–155.
[8] Avdonin, S. and Pandolfi, L. (2011). Temperature and heat flux dependence independence for heat equations with memory, in R. Sipahi, T. Vyhlidal, S.-I. Niculescu and P. Pepe (Eds.), Time Delay Systems—Methods, Applications and New Trends, Lecture Notes in Control and Information Sciences, Vol. 423, Springer-Verlag, Berlin/Heidelberg, pp. 87–101.
[9] Biot, M. (1962). Generalized theory of acoustic propagation in porous dissipative media, The Journal of the Acoustical Society of America 34(9): 1254–1264.
[10] Bodart, O. and Fabre, C. (1995). Controls insensitizing the norm of the solution of a semilinear heat equation, Journal of Mathematical Analysis and Applications 195(3): 658–683.
[11] Dáger, R. (2006). Insensitizing controls for the 1-D wave equation, SIAM Journal on Control and Optimization 45(5): 1758–1768.
[12] El Jai, A. and Hamzaoui, H. (2009). Regional observation and sensors, International Journal of Applied Mathematics and Computer Science 19(1): 5–14, DOI: 10.2478/v10006-009-0001-y.
[13] Hansen, S. and Zuazua E. (1995). Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM Journal on Control and Optimization 33(5): 1357–1391.
[14] Holger, S., Frehner, M. and Schmalholz S. (2010). Waves in residual-saturated porous media, in G.A. Maugin and A.V. Metrikine (Eds.), Mechanics of Generalized Continua, Advances in Mechanics and Mathematics, Vol. 21, Springer, New York, NY, pp. 179–187.
[15] Kavian, O. and de Teresa, L. (2010). Unique continuation principle for systems of parabolic equations, ESAIM: Control, Optimisation and Calculus of Variations 16(2): 247–274.
[16] Khapalov, A. (2010). Source localization and sensor placement in environmental monitoring, International Journal of Applied Mathematics and Computer Science 20(3): 445–458, DOI: 10.2478/v10006-010-0033-3.
[17] Leonard, E. (1996). The matrix exponential, SIAM Review 38(3): 507–512.
[18] Lions, J.L. (1989). Remarques préliminaires sur le contrôle des systèmes à données incomplètes, XI Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), Málaga, Spain pp. 43–54.
[19] Najafi, M. (2001). Study of exponential stability of coupled wave systems via distributed stabilizer, International Journal of Mathematics and Mathematical Sciences 28(8): 479–491.
[20] Najafi, M., Sarhangi G.R. and Wang H. (1997). Stabilizability of coupled wave equations in parallel under various boundary conditions, IEEE Transactions on Automatic Control 42(9): 1308–1312.
[21] Pandolfi, L. (2009). Riesz system and the controllability of heat equations with memory Integral Equations and Operator Theory 64(3): 429–453.
[22] Rosier, L. and de Teresa, L. (2011). Exact controllability of a cascade system of conservative equations, Comptes Rendus Mathematique 349(5): 291–296.
[23] Russell, D. (1978). Controllability and stabilizability theory for linear partial differential equations, SIAM Review 20(4): 639–739.
[24] Tebou, L. (2008). Locally distributed desensitizing controls for the wave equation, Comptes Rendus Mathematique 346(7): 407–412.
[25] de Teresa, L. (2000). Insensitizing controls for a semilinear heat equation, Communications in Partial Differential Equations 25(1–2): 39–72.
[26] Uciński, D. and Patan, M. (2010). Sensor network design for the estimation of spatially distributed processes, International Journal of Mathematics and Mathematical Sciences 20(3): 459–481, DOI: 10.2478/v10006-010-0034-2.