Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_3_a8, author = {Yarza, A. and Santibanez, V. and Moreno-Valenzuela, J.}, title = {An adaptive output feedback motion tracking controller for robot manipulators: {Uniform} global asymptotic stability and experimentation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {599--611}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a8/} }
TY - JOUR AU - Yarza, A. AU - Santibanez, V. AU - Moreno-Valenzuela, J. TI - An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 599 EP - 611 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a8/ LA - en ID - IJAMCS_2013_23_3_a8 ER -
%0 Journal Article %A Yarza, A. %A Santibanez, V. %A Moreno-Valenzuela, J. %T An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 599-611 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a8/ %G en %F IJAMCS_2013_23_3_a8
Yarza, A.; Santibanez, V.; Moreno-Valenzuela, J. An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 3, pp. 599-611. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a8/
[1] Abdessameud, A. and Khelfi, M.F. (2006). A variable structure observer for the control of robot manipulators, International Journal of Applied Mathematics and Computer Science 16(2):189–196.
[2] Arimoto, S., Parra-Vega, V. and Naniwa, T. (1994). A class of linear velocity observers for nonlinear mechanical systems, Asian Control Conference, Tokyo, Japan, pp. 633–636.
[3] Arimoto, S. (1995a). Fundamental problems of robot control, Part I: Innovation in the realm of robot servo-loops, Robotica 13(1): 19–27.
[4] Arimoto, S. (1995b). Fundamental problems of robot control, Part II: A nonlinear circuit theory towards an understanding of dexterous motions, Robotica 13(2): 111–122.
[5] Bańka, S., Dworak, P. and Jaroszewski, K. (2013). Linear adaptive structure for control of a nonlinear MIMO dynamic plant, International Journal of Applied Mathematics and Computer Science 23(1): 47–63, DOI: 10.2478/amcs-2013-0005.
[6] Berghuis, H. and Nijmeijer, H. (1993). A passivity approach to controller-observer design for robots, IEEE Transactions on Robotics and Automation 9(6): 740–754.
[7] Burkov, I. (1993). Asymptotic stabilization of nonlinear Lagrangian systems without measuring velocities, International Symposium on Active Control in Mechanical Engineering, Lyon, France, pp. 37–41.
[8] Craig, J., Hsu, P. and Sastry, S. (1987). Adaptive control of mechanical manipulators, International Journal of Robotics Research 6(2): 16–28.
[9] Daly, J. and Schwarz, H. (2006). Experimental results for adaptive output feedback control, Robotica 24(6): 727–738.
[10] Kelly, R. (1993). A simple set-point robot controller by using only position measurements, International Federation of Automatic Control World Congress, Sydney, Australia, pp. 173–176.
[11] Kelly, R., Carelli, R. and Ortega, R. (1989). Adaptive motion control design to robot manipulators: An input-output approach, International Journal of Control 50(6): 2563–2581.
[12] Kelly, R., Santibanez, V. and Loria, A. (2005). Control of Robot Manipulators in Joint Space, Springer-Verlag, Berlin.
[13] Khalil, H. (2002). Nonlinear Systems, Prentice-Hall, Englewood Cliffs, NJ.
[14] Koditschek, D. (1984). Natural motion for robot arms, Conference on Decision and Control, Las Vegas, NV, USA, pp. 733–735.
[15] Lim, S., Dawson, D. and Anderson, K. (1996). Re-examining the Nicosia–Tomei robot observer-controller from a backstepping perspective, IEEE Transactions on Control Systems Technology 4(3): 304–310.
[16] Lopez-Araujo, D., Zavala-Rio, A., Santibanez, V. and Reyes, F. (2012). Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs, International Journal of Control, Automation and Systems 11(1): 105–115.
[17] Loria, A., Kelly, R. and Teel, A. (2005). Uniform parametric convergence in the adaptive control of mechanical systems, European Journal of Control 11(2): 87–100.
[18] Loria, A.E., Panteley, Popovic D. and Teel A. (2002). δ-Persistency of excitation: A necessary and sufficient condition for uniform attractivity. IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 3506–3511.
[19] Loria, A. and Nijmeijer, H. (1998). Bounded output feedback tracking control of fully-actuated Euler–Lagrange systems, Systems Control Letters 33(3): 151–161.
[20] Middleton, R. and Goodwin, G. (1998). Adaptive computed torque control for rigid link manipulators, Systems Control Letters 10(1): 9–16.
[21] Moreno-Valenzuela, J., Santibanez, V., Orozco-Manriquez, E. and Gonzalez-Hernandez, L. (2010). Theory and experiments of global adaptive output feedback tracking control of manipulators, IET Control Theory and Applications 4(9): 1639–1654.
[22] Moreno-Valenzuela, J., Santibanez, V., Campa, R. (2008a). A class of OFT controllers for torque-saturated robot manipulators: Lyapunov stability and experimental evaluation, Journal of Intelligent Robotic Systems 51(1): 65–88.
[23] Moreno-Valenzuela, J., Santibanez, V., Campa, R. (2008b). On output feedback tracking control of robots manipulators with bounded torque input, International Journal of Control, Automation, and Systems 6(1): 76–85.
[24] Nicosia, S. and Tomei, P. (1990). Robot control by using only position measurements, IEEE Transactions on Automatic Control 35(9): 1058–1061.
[25] Ortega, R., Loria, A. and Kelly, R. (1995). A semiglobally stable output feedback PI2D regulator for robot manipulators, IEEE Transactions on Automatic Control 40(8): 1432–1436.
[26] Ortega, R. and Spong, M. (1989). Adaptive motion control of rigid robots: A tutorial, Automatica 25(6): 877–888.
[27] Reyes, F. and Kelly, R. (2001). Experimental evaluation of model-based controllers on a direct-drive robot arm, Mechatronics 11(3): 267–282.
[28] Sadegh, N. and Horowitz, R. (1987). Stability analysis of an adaptive controller for robotic manipulators, International Conference on Robotics and Automation, Raleigh, NC, USA, pp. 1223–1229.
[29] Santibanez, V. and Kelly, R. (2001). Global asymptotical stability of bounded output feedback tracking control for robot manipulators, IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 1378–1379.
[30] Santibanez, V. and Kelly, R. (1999). Global convergence of the adaptive PD controller with computed feedforward for robot manipulators, IEEE International Conference on Robotics and Automation, Detroit, MI, USA, pp. 1831–1836.
[31] Slotine, J. and Li, W. (1987). On the adaptive control of robot manipulators, International Journal of Robotics Research 6(3): 49–59.
[32] Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, John Wiley and Sons, New York, NY.
[33] Witkowska, A. and Śmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematics and Computer Science 22(4): 985–997, DOI: 10.2478/v10006-012-0073-y.
[34] Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2011). Uniform global asymptotic stability of an adaptive output feedback tracking controller for robot manipulators, International Federation of Automatic Control World Congress, Milan, Italy, pp. 14590–14595.
[35] Zavala-Rio, A., Aguinaga-Ruiz, E. and Santibanez, V. (2011). Global trajectory tracking through output feedback for robot manipulators with bounded inputs, Asian Journal of Control 13(3): 430–438.
[36] Zergeroglu, E., Dawson, D.M., de Queiroz, M.S. and Krstic, M. (2000). On global output feedback tracking control of robot manipulators, Proceedings of the IEEE Conference on Decision and Control, Sydney, Australia, pp. 5073–5077.
[37] Zhang, F., Dawson, D.M., de Queiroz, M.S. and Dixon, W.E. (2000). Global adaptive output feedback tracking control of robot manipulators, IEEE Transactions on Automatic Control 45(6): 1203–1208.