Controlling a non-homogeneous Timoshenko beam with the aid of the torque
International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 3, pp. 587-598.

Voir la notice de l'article provenant de la source Library of Science

Considered is the control and stabilizability of a slowly rotating non-homogeneous Timoshenko beam with the aid of a torque. It turns out that the beam is (approximately) controllable with the aid of the torque if and only if it is (approximately) controllable. However, the controllability problem appears to be a side-effect while studying the stabilizability. To build a stabilizing control one needs to go through the methods of correcting the operators with functionals so that they have finally the appropriate form and the results on C0-continuous semigroups may be applied.
Keywords: Timoshenko beam, rotating beam control, approximate control, stabilizability
Mots-clés : belka Timoshenki, sterowanie wiązką, sterowanie aproksymacyjne, stabilizowalność
@article{IJAMCS_2013_23_3_a7,
     author = {Sklyar, G. M. and Szkibiel, G.},
     title = {Controlling a non-homogeneous {Timoshenko} beam with the aid of the torque},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {587--598},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a7/}
}
TY  - JOUR
AU  - Sklyar, G. M.
AU  - Szkibiel, G.
TI  - Controlling a non-homogeneous Timoshenko beam with the aid of the torque
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2013
SP  - 587
EP  - 598
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a7/
LA  - en
ID  - IJAMCS_2013_23_3_a7
ER  - 
%0 Journal Article
%A Sklyar, G. M.
%A Szkibiel, G.
%T Controlling a non-homogeneous Timoshenko beam with the aid of the torque
%J International Journal of Applied Mathematics and Computer Science
%D 2013
%P 587-598
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a7/
%G en
%F IJAMCS_2013_23_3_a7
Sklyar, G. M.; Szkibiel, G. Controlling a non-homogeneous Timoshenko beam with the aid of the torque. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 3, pp. 587-598. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a7/

[1] Avdonin, S.A. and Ivanov, S.A. (1995). Families of Exponentials, Cambridge University Press, Cambridge.

[2] Avdonin, S. and Moran, W. (2001). Ingham-type inequalities and Riesz bases of divided differences, International Journal of Applied Mathematics Computer Science 11(4): 803–820.

[3] Kaczorek, T. (2012). Existence and determination of the set of Metzler matrices for given stable polynomials, International Journal of Applied Mathematics Computer Science 22(2): 389–399, DOI: 10.2478/v10006-012-0029-2.

[4] Kato, T. (1966). Perturbation Theory for Linear Operators, Springer-Verlag, Berlin.

[5] Krabs,W. and Sklyar, G.M. (2002). On Controllability of Linear Vibrations, Nova Science Publishers Inc., Huntington, NY.

[6] Levin, B. (1961). On Riesz bases of exponential in 12, Zapiski Matematicheskogo Otdieleniya Fiziko-matematicheskogo Fakul’teta Kharkovskogo Universiteta 27(4): 39–48.

[7] Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics Computer Science 22(3): 533–538, DOI: 10.2478/v10006-012-0040-7.

[8] Paley, R.E.A.C. and Wiener, N. (1934). Fourier Transforms in the Complex Domain, American Mathematical Society, Providence, RI.

[9] Respondek, J.S. (2008). Approximate controllability of infinite dimensional systems of the n-th order, International Journal of Applied Mathematics Computer Science 18(2): 199–212, DOI: 10.2478/v10006-008-0018-7.

[10] Russell, D.L. (1967). Non-harmonic Fourier series in control theory of distributed parameter system, Journal of Mathematical Analysis and Applications (18): 542–560.

[11] Sklyar, G.M. and Rezounenko, A.V. (2003). Strong asymptotic stability and constructing of stabilizing control, Matematitcheskaja Fizika, Analiz i Geometria 10(4): 569–582.

[12] Sklyar, G.M. and Szkibiel, G. (2007). Spectral properties of non-homogeneous Timoshenko beam and its controllability, Mekhanika Tverdogo Tela (37): 175–183.

[13] Sklyar, G.M. and Szkibiel, G. (2008a). Controllability from rest to arbitrary position of non-homogeneous Timoshenko beam, Matematitcheskij Analiz i Geometria 4(2): 305–318.

[14] Sklyar, G.M. and Szkibiel, G. (2008b). Spectral properties of non-homogeneous Timoshenko beam and its rest to rest controllability, Journal of Mathematical Analysis and Applications (338): 1054–1069.

[15] Sklyar, G.M. and Szkibiel, G. (2012). Approximation of extremal solution of non-Fourier moment problem and optimal control for non-homogeneous vibrating systems, Journal of Mathematical Analysis and Applications (387): 241–250.

[16] Zerrik, E., Larhrissi, R. and Bourray, H. (2007). An output controllability problem for semilinear distributed hyperbolic systems, International Journal of Applied Mathematics Computer Science 17(4): 437–448, DOI: 10.2478/v10006-007-0035-y.