Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_3_a7, author = {Sklyar, G. M. and Szkibiel, G.}, title = {Controlling a non-homogeneous {Timoshenko} beam with the aid of the torque}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {587--598}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a7/} }
TY - JOUR AU - Sklyar, G. M. AU - Szkibiel, G. TI - Controlling a non-homogeneous Timoshenko beam with the aid of the torque JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 587 EP - 598 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a7/ LA - en ID - IJAMCS_2013_23_3_a7 ER -
%0 Journal Article %A Sklyar, G. M. %A Szkibiel, G. %T Controlling a non-homogeneous Timoshenko beam with the aid of the torque %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 587-598 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a7/ %G en %F IJAMCS_2013_23_3_a7
Sklyar, G. M.; Szkibiel, G. Controlling a non-homogeneous Timoshenko beam with the aid of the torque. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 3, pp. 587-598. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a7/
[1] Avdonin, S.A. and Ivanov, S.A. (1995). Families of Exponentials, Cambridge University Press, Cambridge.
[2] Avdonin, S. and Moran, W. (2001). Ingham-type inequalities and Riesz bases of divided differences, International Journal of Applied Mathematics Computer Science 11(4): 803–820.
[3] Kaczorek, T. (2012). Existence and determination of the set of Metzler matrices for given stable polynomials, International Journal of Applied Mathematics Computer Science 22(2): 389–399, DOI: 10.2478/v10006-012-0029-2.
[4] Kato, T. (1966). Perturbation Theory for Linear Operators, Springer-Verlag, Berlin.
[5] Krabs,W. and Sklyar, G.M. (2002). On Controllability of Linear Vibrations, Nova Science Publishers Inc., Huntington, NY.
[6] Levin, B. (1961). On Riesz bases of exponential in 12, Zapiski Matematicheskogo Otdieleniya Fiziko-matematicheskogo Fakul’teta Kharkovskogo Universiteta 27(4): 39–48.
[7] Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics Computer Science 22(3): 533–538, DOI: 10.2478/v10006-012-0040-7.
[8] Paley, R.E.A.C. and Wiener, N. (1934). Fourier Transforms in the Complex Domain, American Mathematical Society, Providence, RI.
[9] Respondek, J.S. (2008). Approximate controllability of infinite dimensional systems of the n-th order, International Journal of Applied Mathematics Computer Science 18(2): 199–212, DOI: 10.2478/v10006-008-0018-7.
[10] Russell, D.L. (1967). Non-harmonic Fourier series in control theory of distributed parameter system, Journal of Mathematical Analysis and Applications (18): 542–560.
[11] Sklyar, G.M. and Rezounenko, A.V. (2003). Strong asymptotic stability and constructing of stabilizing control, Matematitcheskaja Fizika, Analiz i Geometria 10(4): 569–582.
[12] Sklyar, G.M. and Szkibiel, G. (2007). Spectral properties of non-homogeneous Timoshenko beam and its controllability, Mekhanika Tverdogo Tela (37): 175–183.
[13] Sklyar, G.M. and Szkibiel, G. (2008a). Controllability from rest to arbitrary position of non-homogeneous Timoshenko beam, Matematitcheskij Analiz i Geometria 4(2): 305–318.
[14] Sklyar, G.M. and Szkibiel, G. (2008b). Spectral properties of non-homogeneous Timoshenko beam and its rest to rest controllability, Journal of Mathematical Analysis and Applications (338): 1054–1069.
[15] Sklyar, G.M. and Szkibiel, G. (2012). Approximation of extremal solution of non-Fourier moment problem and optimal control for non-homogeneous vibrating systems, Journal of Mathematical Analysis and Applications (387): 241–250.
[16] Zerrik, E., Larhrissi, R. and Bourray, H. (2007). An output controllability problem for semilinear distributed hyperbolic systems, International Journal of Applied Mathematics Computer Science 17(4): 437–448, DOI: 10.2478/v10006-007-0035-y.