Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_3_a6, author = {Arminski, K. and Zubowicz, T. and Brdys, M. A.}, title = {A biochemical multi-species quality model of a drinking water distribution system for simulation and design}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {571--585}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a6/} }
TY - JOUR AU - Arminski, K. AU - Zubowicz, T. AU - Brdys, M. A. TI - A biochemical multi-species quality model of a drinking water distribution system for simulation and design JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 571 EP - 585 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a6/ LA - en ID - IJAMCS_2013_23_3_a6 ER -
%0 Journal Article %A Arminski, K. %A Zubowicz, T. %A Brdys, M. A. %T A biochemical multi-species quality model of a drinking water distribution system for simulation and design %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 571-585 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a6/ %G en %F IJAMCS_2013_23_3_a6
Arminski, K.; Zubowicz, T.; Brdys, M. A. A biochemical multi-species quality model of a drinking water distribution system for simulation and design. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 3, pp. 571-585. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a6/
[1] Antonious, P. (1989). Determination of Biokinetic Coefficients for Nitrification in the Activated Sludge Process, Master’s thesis, University of Florida, Gainesville, FL.
[2] Arminski, K. and Zubowicz, T. (2011). Multispecies quality model for drinking water distribution system. InSIK technical report v.2.0., Technical report, Gdańsk University of Technology, Gdańsk.
[3] Bitton, G. (1998). Formula Handbook for Environmental Engineers and Scientists, John Wiley and Sons, New York, NY.
[4] Bousher, A., Brimblecombe, P. and Midgley, D. (1986). Rate of hypobromite formation in chlorinated seawater, Water Research 20(7): 865–870.
[5] Brdys, M. (2010). Intelligent monitoring and control for critical infrastructure systems and application to integrated wastewater treatment systems, 12th IFAC Symposium on Large Scale Systems: Theory and Applications, Lille, France, Vol. 9, pp. 2–12, DOI: 10.3182/20100712-3-FR-2020.00003.
[6] Brdys, M. and Ulanicki, B. (1994). Operational Control of Water Systems: Structures, Algorithms and Applications, Prentice Hall Int, Upper Saddle River, NJ.
[7] Bull, R.J., Reckhowb, D.A., Li, X., Humpaged, A.R., Joll, C. and Hrudeyc, S.E. (2011). Potential carcinogenic hazards of non-regulated disinfection by-products: Haloquinones, halo-cyclopentene and cyclohexene derivatives, n-halamines, halonitriles, and heterocyclic amines, Toxicology 286(1): 1–19, DOI:10.1016/j.tox.2011.05.004.
[8] Chowdhury, S., Champagne, P. and McLellan, P.J. (2009). Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review, Science of the Total Environment 407(14): 4189–4206, DOI:10.1016/j.scitotenv.2009.04.006.
[9] Clark, R. M., and Sivaganesan, M. (2002). Predicting chlorine residuals in drinking water: Second order model, Journal of Water Resources Planning and Management 128(2): 152–151.
[10] Davis, M. and Robert, J.D. (2003). Fundamentals of Chemical Reaction Engineering, McGraw-Hill, New York, NY.
[11] Deborae, M. and von Guten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment kintetics and mechanisms: A critical review, Water Research 42(1–2): 13–51, DOI:10.1016/j.watres.2007.07.025.
[12] Digiano, F. and Zhang, W. (2008). Uncertainty analysis in a mechanistic model of bacterial regrowth in distribution system, Environmental Science Technology 38(22): 5925–5931, DOI:10.1021/es049745l.
[13] Duirk, S., Gombert, B., Choi, J. and L., V.R. (2002). Monochloramine loss in the presence of humic acid, Journal of Environmental Monitoring 4(1): 85–89, DOI: 10.1039/b106047n.
[14] EU Cost Action IC0806-IntelliCIS (2008). Memorandum of Understanding, 7th Framework Program, http://www.intellicis.eu.
[15] EU Council Directive (1998). Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption, http://eur-lex.europa.eu.
[16] Frateur, I., Deslouis, C., Kiene, L., Levi, Y. and Tribollet, B. (1999). Free chlorine consumption induced by cast iron corrosion in drinking water distribution systems, Water Research 33(8): 1781–1790.
[17] Gazda, M. and Margerum, D.W. (1994). Reactions of monochloramine with br2, br-3, hobr, and obr-: Formation of bromochloramines, Inorganic Chemistry 25(19): 118–123.
[18] Gray, J.E.T., Margerum, D.W. and Huffman, R.P. (1978). Chloramine equilibria and the kinetics of disproportionation in aqueous solution, in F.E. Brinckman and J.M. Bellama (Eds.), Organometals and Organometalloids: Occurrence and Fate in the Environment, ACS Books, Washington, DC, pp. 264–277.
[19] Hammes, F., Vital, M., Egli, T., Rubulis, J. and Juhna, T. (2007). Modeling planktonic and biofilm growth of a monoculture (p. fluorescens) in drinking water, TECHNEAU Project Deliverable 5.5.9,http://www.techneau.org/fileadmin/files/Publications/Publications/Deliverables/D5.5.9.pdf.
[20] Hand, V.C. and Margerum, D.W. (1983). Kinetics and mechanisms of the decomposition of dichloramine in aqueous solution, Inorganic Chemistry 22(10): 1449–1456, DOI: 10.1021/ic00152a007.
[21] Helbling, D. and VanBriesen, J. (2009). Modeling residual chlorine response to a microbial contamination event in drinking water distribution systems, Journal of Environmental Engineering 135(10): 918–927, DOI:10.1061/(ASCE)EE.1943-7870.0000080.
[22] Hong, Y., Liu, S. and Karanfil, T. (2008). Understanding DBP formation during chloramination, Florida Water Resource Journal 60(4): 51–53.
[23] Hrudey, S.E. (2009). Chlorination disinfection by-products, public health risk tradeoffs and me, Water Research 43(8): 2057–2092, DOI:10.1016/j.watres.2009.02.011.
[24] Jafvert, C.T. and Valentine, R.L. (1987). Dichloramine decomposition in the presence of excess ammonia, Water Research 21(8): 967–973.
[25] Jegatheesan, V., Kastl, G., Fisher, I., Chandy, J. and Angles, M. (2003). Water quality modelling for drinking water distribution systems, International Congress on Modelling and Simulation, Townsville, Australia, pp. 332–337.
[26] Jegatheesan, V., Kastl, G., Fisher, I., Chandy, J. and Angles, M. (2004). Modeling bacterial growth in drinking water: Effect of nutrients, Journal of AWWA (American Water Works Association) 96(5): 129–141.
[27] Johnson, D.W. and Margerum, D.W. (1991). Non-metal redox kinetics: A reexamination of the mechanism of the reaction between hypochlorite and nitrite ions, Inorganic Chemistry 30(25): 4845–4851.
[28] Kohpaei, A. and Sathasivan, A. (2011). Chlorine decay prediction in bulk water using the parallel second order model: An analytical solution development, Chemical Engineering Journal 171(1): 232–241, DOI:10.1016/j.cej.2011.03.034.
[29] Leao, S.F. (1981). Kinetics of Combined Chlorine: Reaction of Substitution and Redox, Ph.D. thesis, University of California, Berkeley, CA.
[30] LeChevallier, M., Welch, N. and Smith, D.B. (1996). Full-scale studies of factors related to coliform regrowth in drinking water, Applied and Environmental Microbiology 62(7): 2201–2211.
[31] Liu:2005a Liu, S., Taylor, J., Randall, A.A. and Dietz, J. (2005a). Nitrification modeling in chloraminated distribution systems, American Water Works Association 97(10): 98–108.
[32] Liu, S., Taylor, J.S. and Webb, D. (2005b). Water quality profiles during nitrification in a pilot distribution system study, Water Supply: Research and Technology—Aqua 54(3): 133–145.
[33] Liu, W. and Qi, S. (2010). Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination, Frontiers of Environmental Science Engineering in China 4(1): 65–72, DOI:10.1007/s11783-010-0010-y.
[34] Lu C., Biswas P., Clark, R.M. (1995). Simultaneous transport of substrates, disinfectants and microorganisms in water pipes, Water Research 29(3): 881–894.
[35] Łangowski, R. and Brdys, M.A. (2007). Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator, International Journal of Applied Mathematics and Computer Science 17(2): 199–216. DOI: 10.2478/v10006-007-0019-y.
[36] Margerum, D.W., Gray, E.T. and Huffman, R.P. (1978). Chlorination and the formation of N-chloro compounds in water treatment, in F.E. Brinckman and J.M. Bellama (Eds.), Organometals and Organometalloids: Occurrence and Fate in the Environment, ACS Books, Washington, DC, pp. 278–291.
[37] Margerum, D.W., Schurter, L.M., Hobson, J. and Moore, E.E. (1994). Water chlorination chemistry: Nonmetal redox kinetics of chloramine and nitrite ion, Environmental Science Technology 28(2): 331–337.
[38] McKinney, R.E. (2004). Environmental Pollution Control Microbiology, Marcel Beckher, New York, NY.
[39] Metcalf, E. and Tchobanoglous, G. (1978). Wastewater Engineering Treatment Disposal Reuse, McGraw-Hill, Upper Saddle River, NJ.
[40] Morris, J.C. and Isaac, R.A. (1981). A critical review of kinetic and thermodynamic constants for the aqueous chlorine-ammonia system, in R.L. Jolley, W.A. Brungs, J.A. Cotruvo, R.B. Cumming, J.S. Mattice, and V.A. Jacobs (Eds.), Water Chlorination: Environmental Impact and Health Effects, Ann Arbor Science, Ann Arbor, MI, pp. 49–62.
[41] Muellner, M.G., Wagner, E.D., McCalla, K., Richardson, S.D., Woo, Y.T. and Plewa, M.J. (2007). Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic?, Environmental Science and Technology 41(2): 645–651.
[42] Myszor, D. and Cyran, K. (2013). Mathematical modeling of molecule evolution in protocells, International Journal of Applied Mathematics of Computer Science 23(1): 213–229, DOI: 10.2478/amcs-2013-0017.
[43] Nokes, C., Fenton, E. and Randal, C. (1999). Modelling the formation of brominated trihalomatanes in chlorinated drinking waters, Water Research 33(17): 3557–3568.
[44] Nowicki, A., Grochowski, M. and Duzinkiewicz, K. (2012). Data-driven models for fault detection using kernel PCA: A water distribution system case study, International Journal of Applied Mathematics of Computer Science 22(4): 939–949, DOI: 10.2478/v10006-012-0070-1.
[45] Poduska, R.A. and Andrews, F.J. (1974). Dynamics of nitrification in the activated sludge process, 29th Industrial Waste Conference, Lafayette, IN, USA, pp. 2599–2619.
[46] Pope, P.G. (2006). Haloacetic Acid Formation During Chloramination: Role of Environmental Conditions, Kinetics, and Haloamine Chemistry, Ph.D. thesis, University of Texas at Austin, TX.
[47] Rossman, L.A. (2000). Epanet 2 users manual, Risk Reduction Engineering Laboratory, US EPA, Cincinnati, OH.
[48] Rossman, L.A., Clark, R.M. and Grayman, W.M. (1994). Modeling chlorine residuals in drinking-water distribution-systems, Journal of Environmental Engineering 120(4): 803–820.
[49] Sadiq, R. and Rodriguez, R.J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review, Science of the Total Environment 321(1–3): 21–46.
[50] Shang, F. and Rossman, L. (2011). Epanet multi-specie extention user‘s manual, EPA/600/S-07/021, National Risk Management Research Laboratory, National Homeland Security Research Center Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH.
[51] Shang, F., Uber, J. and Rossman, L. (2008). Modeling reaction and transport of multiple species in water distribution systems, Environmental Science Technology 42(3): 808–814, DOI: 10.1021/es072011z.
[52] Snoeyink, V.L. and Jenkins, D. (1980). Water Chemistry, John Wiley and Sons, New York, NY.
[53] Trofe, T.W., Inman, J.G.W. and Johnson, J.D. (1980). Kinetics of monochloramine decomposition in the presence of bromide, Environmental Science Technology 14(5): 544–549, DOI: 10.1021/es60165a008.
[54] van der Kooij, D., Vrouwenvelder, H. and Veenendaal, H. (1995). Kintetic aspects of biofilm formation on surfaces exposed to drinking water, Water Science and Technology 32(8): 61–65, DOI:10.1016/0273-1223(96)00008-X.
[55] Vikesland, P.J., Ozekin, K. and Valentine, R. (2001). Monochloramine decay in model and distribution system waters, Water Research 35(7): 1766–1776.
[56] Williamson, K. and McCarty, P. (1976). Verification studies of the biofilm model for bacterial substrate utilization, Journal of Water Pollution Control Federation 48(2): 1281–289.
[57] World Health Organisation (2005). Guidelines for drinking water quality. Dichloroacetic acid in drinking-water, Report No. WHO/SDE/WSH/05.08/121.
[58] Zhang,W.,Miller, C. and DiGiano, F. (2004). Bacterial regrowth model for water distribution systems incorporating alternating split-operator solution technique, Journal of Environmental Engineering 130(3): 932–941, DOI: 10.1060/(ASCE)0733-39372(2004)130:9(932).