Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_3_a4, author = {Rauh, A. and Butt, S. S. and Aschemann, H.}, title = {Nonlinear state observers and extended {Kalman} filters for battery systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {539--556}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a4/} }
TY - JOUR AU - Rauh, A. AU - Butt, S. S. AU - Aschemann, H. TI - Nonlinear state observers and extended Kalman filters for battery systems JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 539 EP - 556 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a4/ LA - en ID - IJAMCS_2013_23_3_a4 ER -
%0 Journal Article %A Rauh, A. %A Butt, S. S. %A Aschemann, H. %T Nonlinear state observers and extended Kalman filters for battery systems %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 539-556 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a4/ %G en %F IJAMCS_2013_23_3_a4
Rauh, A.; Butt, S. S.; Aschemann, H. Nonlinear state observers and extended Kalman filters for battery systems. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 3, pp. 539-556. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a4/
[1] Aylor, J., Thieme, A. and Johnso, B. (1992). A battery state-of-charge indicator for electric wheelchairs, IEEE Transactions on Industrial Electronics 39(5): 398–409.
[2] Benger, R., Jiang, M., Beck, H., Wenzl, H., Ohms, D. and Schaedlich, G. (2009). Electrochemical and thermal modeling of lithium-ion cells for use in HEV or EV application, World Electric Vehicle Journal 3: 1–10, http://www.evs24.org/wevajournal/vol3/title.html.
[3] Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M. and Scarsi, R. (2001). Discrete-time battery models for system-level low-power design, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(5): 630–640.
[4] Bhangu, B., Bentley, P., Stone, D. and Bingham, C. (2005). Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles, IEEE Transactions on Vehicular Technology 54(3): 783–794.
[5] Bo, C., Zhifeng, B. and Binggang, C. (2008). State of charge estimation based on evolutionary neural network, Journal of Energy Conversion and Management 49(10): 2788–2794.
[6] Buller, S., Thele, M., Doncker, R. and Karden, E. (2005). Impedance based simulation models of supercapacitors and Li-ion batteries for power electronic applications, IEEE Transactions on Industry Applications 41(3): 742–747.
[7] Chan, C., Lo, E. and Weixiang, S. (2000). The available capacity computation model based on artificial neural network for lead-acid batteries in electric vehicles, Journal of Power Sources 87(1–2): 201–204.
[8] Chen, M. and Rincon-Mora, G. (2006). Accurate electrical battery model capable of predicting runtime and I-V performance, IEEE Transactions on Energy Conversion 21(2): 504–511.
[9] Chiasson, J. and Vairamohan, B. (2005). Estimating the state of charge of a battery, IEEE Transactions on Control Systems Technology 13(3): 465–470.
[10] Erdinc, O., Vural, B. and Uzunoglu, M. (2009). A dynamic lithium-ion battery model considering the effects of temperature and capacity fading, International Conference on Clean Electrical Power, Capri, Italy, pp. 383–386.
[11] Gomadam, P., Weidner, J., Dougal, R. and White, R. (2002). Mathematical modeling of lithium-ion and nickel battery systems, Journal of Power Sources 110(2): 267–284.
[12] Gu, W. and Wang, C. (2000). Thermal-electrochemical modeling of battery systems, Journal of The Electrochemical Society 147(8): 2910–2922.
[13] Isidori, A. (1995). Nonlinear Control Systems, 1: An Introduction, Springer-Verlag, Berlin.
[14] Johnson, V. (2002). Battery performance models in ADVISOR, Journal of Power Sources 110(2): 321–329.
[15] Junping, W., Jingang, G. and Lei, D. (2009). An adaptive Kalman filtering based state of charge combined estimator for electric vehicle battery pack, Journal of Energy Conversion and Management 50(12): 3182–3186.
[16] Kim, I. (2006). The novel state of charge estimation method for lithium battery using sliding mode observer, Journal of Power Sources 163(1): 584–590.
[17] Klein, R., Chaturvedi, N., Christensen, J., Ahmed, J., Findeisen, R. and Kojic, A. (2012). Electrochemical model based observer design for a lithium-ion battery, IEEE Transactions on Control Systems Technology PP(99): 1–13.
[18] Krener, J. and Isidori, A. (1983). Linearization by output injection and nonlinear observers, Journal of Systems and Control Letters 3(1): 47–52.
[19] Leska, M., Prabel, R., Rauh, A. and Aschemann, H. (2011). Simulation and optimization of the longitudinal dynamics of parallel hybrid railway vehicles, in E. Schnieder and G. Tarnai (Eds.), FORMS/FORMAT 2010, Springer, Berlin/Heidelberg, pp. 155–164.
[20] Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control 76(9–10): 924–941.
[21] Mohinder, S. and Andrews, P. (2001). Kalman Filtering: Theory and Practice—Using MATLAB, 2nd Edn., Wiley-Interscience, Hoboken, NJ.
[22] Pang, S., Farrell, J., Du, J. and Barth, M. (2001). Battery state-of-charge estimation, American Control Conference, Arlington, VA, USA, Vol. 2, pp. 1644–1649.
[23] Plett, G. (2004a). Extended Kalman filtering for battery management systems of LIPB-based HEV battery packs, Part 1: Background, Journal of Power Sources 134(2): 252–261.
[24] Plett, G. (2004b). Extended Kalman filtering for battery management systems of LIPB-based HEV battery packs, Part 2: Modeling and identification, Journal of Power Sources 134(2): 262–276.
[25] Plett, G. (2004c). Extended Kalman filtering for battery management systems of LIPB-based HEV battery packs, Part 3: State and parameter estimation, Journal of Power Sources 134(2): 277–292.
[26] Rauh, A. and Aschemann, H. (2012). Sensitivity-based state and parameter estimation for lithium-ion battery systems, 9th International Conference on System Identification and Control Problems, SICPRO’12, Moscow, Russia, pp. 469–485.
[27] Rauh, A., Minisini, J. and Hofer, E. (2009). Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties, International Journal of Applied Mathematics and Computer Science 19(3): 425–439, DOI: 10.2478/v10006-009-0035-1.
[28] Rauh, A., Weitschat, R. and Aschemann, H. (2010). Modellgestützter Beobachterentwurf zur Betriebszustands- und Alterungserkennung für Lithium-Ionen-Batterien, VDI-Berichte 2105: Innovative Fahrzeugantriebe 2010 Die Vielfalt der Mobilitt: Vom Verbrenner bis zum E-Motor: 7. VDI-Tagung Innovative Fahrzeugantriebe, Dresden, Germany, pp. 377–382.
[29] Remmlinger, J., Buchholz, M., Meiler, M., Bernreuter, P. and Dietmayer, K. (2011). State-of-health monitoring of lithium-ion batteries in electric vehicles by on board internal resistance estimation, Journal of Power Sources 196(12): 5357–5363.
[30] Rong, P. and Pedram, M. (2006). An analytical model for predicting the remaining battery capacity of lithium-ion batteries, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 14(5): 441–451.
[31] Salameh, Z., Casacca, M. and Lynch,W. (1992). A mathematical model for lead-acid batteries, IEEE Transactions on Energy Conversion 7(1): 93–98.
[32] Serrao, L., Chehab, Z., Guezennee, Y. and Rizzoni, G. (2005). An aging model of Ni-MH batteries for hybrid electric vehicles, IEEE Conference on Vehicle Power and Propulsion, Chicago, IL, USA, pp. 78–85.
[33] Shen, Y. (2010). Adaptive online state-of-charge determination based on neuro-controller and neural network, Journal of Energy Conversion and Management 51(5): 1093–1098.
[34] Smith, K., Rahn, C. and Wang, C. (2010). Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries, IEEE Transactions on Control Systems Technology 3(18): 654–663.
[35] Stengel, R. (1994). Optimal Control and Estimation, Dover Publications, Inc, Mineola, NY.
[36] Wang, C. and Srinivasan, V. (2002). Computational battery dynamics (CBD)-electrochemical/thermal coupled modeling and multi-scale modeling, Journal of Power Sources 110(2): 364–376.
[37] Xu, D., Jiang, B., Shi, P. (2012). Nonlinear actuator fault estimation observer: An inverse system approach via a T–S fuzzy model, International Journal of Applied Mathematics and Computer Science 22(1): 183–196, DOI: 10.2478/v10006-012-0014-9.
[38] Zeitz, M. (1987). The extended Luenberger observer for nonlinear systems, Systems and Control Letters 9(2): 149–156.
[39] Zhang, F., Liu, G. and Fang, L. (2008). A battery state of charge estimation method using sliding mode observer, 7th World Congress on Intelligent Control and Automation, WCICA 2008, Chongqing, China, pp. 989–994.
[40] Zhirabok, A. and Shumsky, A. (2012). An approach to the analysis of observability and controllability in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science 22(3): 507–522, DOI: 10.2478/v10006-012-0038-1.