Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_3_a3, author = {Mzyk, G.}, title = {Nonparametric instrumental variables for identification of block-oriented systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {521--537}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a3/} }
TY - JOUR AU - Mzyk, G. TI - Nonparametric instrumental variables for identification of block-oriented systems JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 521 EP - 537 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a3/ LA - en ID - IJAMCS_2013_23_3_a3 ER -
%0 Journal Article %A Mzyk, G. %T Nonparametric instrumental variables for identification of block-oriented systems %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 521-537 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a3/ %G en %F IJAMCS_2013_23_3_a3
Mzyk, G. Nonparametric instrumental variables for identification of block-oriented systems. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 3, pp. 521-537. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_3_a3/
[1] Bai, E. (1998). An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems, Automatica 34(3): 333–338.
[2] Chen, S. and Billings, S. (1989). Representations of non-linear systems: The NARMAX model, International Journal of Control 49(3): 1013–1032.
[3] Chow, Y. and Teicher, H. (2003). Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, New York, NY.
[4] Findeisen, W., Bailey, F., Brdyś, M., Malinowski, K., Tatjewski, P. and Woźniak, A. (1980). Control and Coordination in Hierarchical Systems, J. Wiley, Chichester/New York, NY.
[5] Finigan, B. and Rowe, I. (1974). Strongly consistent parameter estimation by the introduction of strong instrumental variables, IEEE Transactions on Automatic Control 19(6): 825–830.
[6] Giri, F. and Bai, E.W. (2010). Block-Oriented Nonlinear System Identification, Lecture Notes in Control and Information Sciences, Vol. 404, Springer, Berlin.
[7] Greblicki, W. and Pawlak, M. (2008). Nonparametric System Identification, Cambridge University Press, New York, NY.
[8] Haber, R. and Keviczky, L. (1999). Nonlinear System Identification: Input-Output Modeling Approach, Kluwer Academic Publishers, Dordrecht.
[9] Hannan, E. and Deistler, M. (1988). The Statistical Theory of Linear Systems, John Wiley and Sons, New York, NY.
[10] Hansen, L. and Singleton, K. (1982). Generalized instrumental variables estimation of nonlinear rational expectations models, Econometrica: Journal of the Econometric Society 50(5): 1269–1286.
[11] Hasiewicz, Z. (1989). Applicability of least-squares to the parameter estimation of large-scale no-memory linear composite systems, International Journal of Systems Science 20(12): 2427–2449.
[12] Hasiewicz, Z. and Mzyk, G. (2009). Hammerstein system identification by non-parametric instrumental variables, International Journal of Control 82(3): 440–455.
[13] Hill, D. and Chong, C. (1989). Lyapunov functions of Lur’e–Postnikov form for structure preserving models of power systems, Automatica 25(3): 453–460.
[14] Hill, D. and Mareels, I. (1990). Stability theory for differential/algebraic systems with application to power systems, IEEE Transactions on Circuits and Systems 37(11): 1416–1423.
[15] Kincaid, D. and Cheney, E. (2002). Numerical Analysis: Mathematics of Scientific Computing, Vol. 2, American Mathematical Society, Pacific Grove, CA.
[16] Kowalczuk, Z. and Kozłowski, J. (2000). Continuous-time approaches to identification of continuous-time systems, Automatica 36(8): 1229–1236.
[17] Kudrewicz, J. (1976). Functional Analysis for Control and Electronics Engineers, PWN, Warsaw, (in Polish).
[18] Lu, J. and Hill, D. (2007). Impulsive synchronization of chaotic Lur’e systems by linear static measurement feedback: An LMI approach, IEEE Transactions on Circuits and Systems II: Express Briefs 54(8): 710–714.
[19] Mzyk, G. (2007). Generalized kernel regression estimate for the identification of Hammerstein systems, International Journal of Applied Mathematics and Computer Science 17(2): 189–197, DOI: 10.2478/v10006-007-0018-z.
[20] Mzyk, G. (2009). Nonlinearity recovering in Hammerstein system from short measurement sequence, IEEE Signal Processing Letters 16(9): 762–765.
[21] Mzyk, G. (2013). Instrumental variables for nonlinearity recovering in block-oriented systems driven by correlated signal, International Journal of Systems Science, DOI: 10.1080/00207721.2013.775682.
[22] Rao, C. (1973). Linear Statistical Inference and Its Applications, Wiley, New York, NY.
[23] Sagara, S. and Zhao, Z.-Y. (1990). Numerical integration approach to on-line identification of continuous-time systems, Automatica 26(1): 63–74.
[24] Sastry, S. (1999). Nonlinear Systems: Analysis, Stability, and Control, Interdisciplinary Applied Mathematics, Vol. 10, Springer, New York, NY.
[25] Söderström, T. and Stoica, P. (1983). Instrumental Variable Methods for System Identification, Vol. 161, Springer-Verlag, Berlin.
[26] Söderström, T. and Stoica, P. (1989). System Identification, Prentice Hall, Englewood Cliffs, NJ.
[27] Söderström, T. and Stoica, P. (2002). Instrumental variable methods for system identification, Circuits, Systems, and Signal Processing 21(1): 1–9.
[28] Stoica, P. and Söderström, T. (1982). Instrumental-variable methods for identification of Hammerstein systems, International Journal of Control 35(3): 459–476.
[29] Suykens, J., Yang, T. and Chua, L. (1998). Impulsive synchronization of chaotic Lur’e systems by measurement feedback, International Journal of Bifurcation and Chaos 8(06): 1371–1381.
[30] Ward, R. (1977). Notes on the instrumental variable method, IEEE Transactions on Automatic Control 22(3): 482–484.
[31] Wong, K. and Polak, E. (1967). Identification of linear discrete time systems using the instrumental variable method, IEEE Transactions on Automatic Control 12(6): 707–718.
[32] Zhang, Y., Bai, E., Libra, R., Rowden, R. and Liu, H. (1996). Simulation of spring discharge from a limestone aquifer in Iowa, USA, Hydrogeology Journal 4(4): 41–54.
[33] Zhao, Z.-Y., Sagara, S. and Wada, K. (1991). Bias-compensating least squares method for identification of continuous-time systems from sampled data, International Journal of Control 53(2): 445–461.