Descriptor fractional linear systems with regular pencils
International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 309-315.

Voir la notice de l'article provenant de la source Library of Science

Methods for finding solutions of the state equations of descriptor fractional discrete-time and continuous-time linear systems with regular pencils are proposed. The derivation of the solution formulas is based on the application of the Z transform, the Laplace transform and the convolution theorems. Procedures for computation of the transition matrices are proposed. The efficiency of the proposed methods is demonstrated on simple numerical examples.
Keywords: descriptor system, fractional system, regular pencil
Mots-clés : układ deskrypcyjny, układ ułamkowy, pęk regularny
@article{IJAMCS_2013_23_2_a4,
     author = {Kaczorek, T.},
     title = {Descriptor fractional linear systems with regular pencils},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {309--315},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a4/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - Descriptor fractional linear systems with regular pencils
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2013
SP  - 309
EP  - 315
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a4/
LA  - en
ID  - IJAMCS_2013_23_2_a4
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T Descriptor fractional linear systems with regular pencils
%J International Journal of Applied Mathematics and Computer Science
%D 2013
%P 309-315
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a4/
%G en
%F IJAMCS_2013_23_2_a4
Kaczorek, T. Descriptor fractional linear systems with regular pencils. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 309-315. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a4/

[1] Dodig, M. and Stosic, M. (2009). Singular systems state feedbacks problems, Linear Algebra and Its Applications 431(8): 1267–1292.

[2] Dai, L. (1989). Singular Control Systems, Lectures Notes in Control and Information Sciences, Vol. 118, Springer-Verlag, Berlin.

[3] Fahmy, M.H and O’Reill, J. (1989). Matrix pencil of closed-loop descriptor systems: Infinite-eigenvalues assignment, International Journal of Control 49(4): 1421–1431.

[4] Gantmacher, F.R. (1960). The Theory of Matrices, Chelsea Publishing Co., New York, NY.

[5] Kaczorek, T. (2012a). Descriptor fractional linear systems with regular pencils, Asian Journal of Control 15(4): 1–14.

[6] Kaczorek, T. (2012b). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.

[7] Kaczorek, T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203–1210.

[8] Kaczorek, T. (2011b). Selected Problems of Fractional System Theory, Springer-Verlag, Berlin.

[9] Kaczorek, T. (2010a). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.

[10] Kaczorek, T. (2010b). Practical stability and asymptotic stability of positive fractional 2D linear systems, Asian Journal of Control 12(2): 200–207.

[11] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.

[12] Kaczorek, T. (2007a). Polynomial and Rational Matrices. Applications in Dynamical Systems Theory, Springer-Verlag, London.

[13] Kaczorek, T. (2007b). Realization problem for singular positive continuous-time systems with delays, Control and Cybernetics 36(1): 47–57.

[14] Kaczorek, T. (2004). Infinite eigenvalue assignment by an output feedbacks for singular systems, International Journal of Applied Mathematics and Computer Science 14(1): 19–23.

[15] Kaczorek, T. (1992). Linear Control Systems, Vol. 1, Research Studies Press J. Wiley, New York, NY.

[16] Kucera, V. and Zagalak, P. (1988). Fundamental theorem of state feedback for singular systems, Automatica 24(5): 653–658.

[17] Luenberger, D.G. (1978). Time-invariant descriptor systems, Automatica 14: 473–480.

[18] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.

[19] Wang, C. (2012). New delay-dependent stability criteria for descriptor systems with interval time delay, Asian Journal of Control 14(1): 197–206.

[20] Van Dooren, P. (1979). The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra and Its Applications 27: 103–140.

[21] Yan L., YangQuan C., Hyo-Sung A., (2011c). Fractional-order iterative learning control for fractional-order systems, Asian Journal of Control 13(1): 54–63.