Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_2_a4, author = {Kaczorek, T.}, title = {Descriptor fractional linear systems with regular pencils}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {309--315}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a4/} }
TY - JOUR AU - Kaczorek, T. TI - Descriptor fractional linear systems with regular pencils JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 309 EP - 315 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a4/ LA - en ID - IJAMCS_2013_23_2_a4 ER -
Kaczorek, T. Descriptor fractional linear systems with regular pencils. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 309-315. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a4/
[1] Dodig, M. and Stosic, M. (2009). Singular systems state feedbacks problems, Linear Algebra and Its Applications 431(8): 1267–1292.
[2] Dai, L. (1989). Singular Control Systems, Lectures Notes in Control and Information Sciences, Vol. 118, Springer-Verlag, Berlin.
[3] Fahmy, M.H and O’Reill, J. (1989). Matrix pencil of closed-loop descriptor systems: Infinite-eigenvalues assignment, International Journal of Control 49(4): 1421–1431.
[4] Gantmacher, F.R. (1960). The Theory of Matrices, Chelsea Publishing Co., New York, NY.
[5] Kaczorek, T. (2012a). Descriptor fractional linear systems with regular pencils, Asian Journal of Control 15(4): 1–14.
[6] Kaczorek, T. (2012b). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.
[7] Kaczorek, T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203–1210.
[8] Kaczorek, T. (2011b). Selected Problems of Fractional System Theory, Springer-Verlag, Berlin.
[9] Kaczorek, T. (2010a). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.
[10] Kaczorek, T. (2010b). Practical stability and asymptotic stability of positive fractional 2D linear systems, Asian Journal of Control 12(2): 200–207.
[11] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223–228, DOI: 10.2478/v10006-008-0020-0.
[12] Kaczorek, T. (2007a). Polynomial and Rational Matrices. Applications in Dynamical Systems Theory, Springer-Verlag, London.
[13] Kaczorek, T. (2007b). Realization problem for singular positive continuous-time systems with delays, Control and Cybernetics 36(1): 47–57.
[14] Kaczorek, T. (2004). Infinite eigenvalue assignment by an output feedbacks for singular systems, International Journal of Applied Mathematics and Computer Science 14(1): 19–23.
[15] Kaczorek, T. (1992). Linear Control Systems, Vol. 1, Research Studies Press J. Wiley, New York, NY.
[16] Kucera, V. and Zagalak, P. (1988). Fundamental theorem of state feedback for singular systems, Automatica 24(5): 653–658.
[17] Luenberger, D.G. (1978). Time-invariant descriptor systems, Automatica 14: 473–480.
[18] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.
[19] Wang, C. (2012). New delay-dependent stability criteria for descriptor systems with interval time delay, Asian Journal of Control 14(1): 197–206.
[20] Van Dooren, P. (1979). The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra and Its Applications 27: 103–140.
[21] Yan L., YangQuan C., Hyo-Sung A., (2011c). Fractional-order iterative learning control for fractional-order systems, Asian Journal of Control 13(1): 54–63.