Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_2_a14, author = {Lisowski, J.}, title = {Sensitivity of computer support game algorithms of safe ship control}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {439--446}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a14/} }
TY - JOUR AU - Lisowski, J. TI - Sensitivity of computer support game algorithms of safe ship control JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 439 EP - 446 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a14/ LA - en ID - IJAMCS_2013_23_2_a14 ER -
%0 Journal Article %A Lisowski, J. %T Sensitivity of computer support game algorithms of safe ship control %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 439-446 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a14/ %G en %F IJAMCS_2013_23_2_a14
Lisowski, J. Sensitivity of computer support game algorithms of safe ship control. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 439-446. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a14/
[1] Baba, N. and Jain, L. (2001). Computational Intelligence in Games, Physica-Verlag, New York, NY.
[2] Basar, T. and Olsder, G. (1982). Dynamic Non-Cooperative Game Theory, Academic Press, New York, NY.
[3] Bist, D. (2000). Safety and Security at Sea, Butter Heinemann, Oxford/New Delhi.
[4] Błaszczyk, J., Karbowski, A. and Malinowski, K. (2007). Object library of algorithms for dynamic optimization problems: Benchmarking SQP and nonlinear interior point methods, International Journal of Applied Mathematics and Computer Science 17(4): 515–537, DOI: 10.2478/v10006-007-0043-y.
[5] Bole, A., Dineley, B. and Wall, A. (2006). Radar and ARPA Manual, Elsevier, Amsterdam/Tokyo.
[6] Cahill, R. (2002). Collisions and Their Causes, Nautical Institute, London.
[7] Clarke, D. (2003). The foundations of steering and manoeuvering, Proceedings of the IFAC Conference on Manoeuvering and Control Marine Crafts, Girona, Spain, pp. 124–132.
[8] Cockcroft, A. and Lameijer, J. (2006). The Collision Avoidance Rules, Elsevier, Amsterdam/Tokyo.
[9] Engwerda, J. (2005). LQ Dynamic Optimization and Differential Games, John Wiley Sons, West Sussex.
[10] Fadali, M. and Visioli, A. (2009). Digital Control Engineering, Elsevier, Amsterdam/Tokyo.
[11] Fang, M. and Luo, J. (2005). The nonlinear hydrodynamic model for simulating a ship steering in waves with autopilot system, Ocean Engineering 32(11): 1486–1502.
[12] Findeisen, W., Szymanowski, J. and Wierzbicki, A. (1980). The Nonlinear Hydrodynamic Model for Simulating a Ship Steering in Waves with Autopilot System, Polish Scientific Publishers, Warsaw.
[13] Fletcher, R. (1987). Practical Methods of Optimization, John Wiley Sons, New York, NY.
[14] Fossen, T. (2011). Marine Craft Hydrodynamics and Motion Control, Wiley, Trondheim.
[15] Gałuszka, A. and Świerniak, A. (2005). Non-cooperative game approach to multi-robot planning, International Journal of Applied Mathematics and Comuter Science 15(3): 359–367.
[16] Gluver, H. and Olsen, D. (1998). Ship Collision Analysis, A.A. Balkema, Rotterdam/Brookfield.
[17] Isaacs, R. (1965). Differential Games, John Wiley Sons, New York, NY.
[18] Isil-Bozma, H. and Koditschek, D. (2001). Assembly as a non-cooperative game of its pieces: Analysis of ID sphere assemblies, Robotica 19(3): 93–108.
[19] Keesman, K. (2011). System Identification, Springer, New York, NY.
[20] Landau, I., Lozano, R., Saadand, M. and Karimi, A. (2011). Adaptive Control, Springer, London/New York, NY.
[21] Lisowski, J. (2007). The dynamic game models of safe navigation, in A. Weintrit (Ed.), Marine Navigation and Safety of Sea Transportation, Gdynia Maritime University, Gdynia, pp. 23–30.
[22] Lisowski, J. (2009). Sensitivity of safe game ship control on base information from ARPA radar, in G. Kouemou (Ed.), Radar Technology, In-Teh, Vukovar, pp. 61–86.
[23] Lisowski, J. (2010). Optimization decision support system for safe ship control, in C.A. Brebbia (Ed.), Risk Analysis, WIT Press, Southampton/Boston, MA, pp. 259–272.
[24] Lisowski, J. (2011). The sensitivity of safe ship control in restricted visibility at sea, in A. Weintrit (Ed.), Marine Navigation and Safety of Sea Transportation, Gdynia Maritime University, Gdynia, pp. 75–84.
[25] Luus, R. (2000). Iterative Dynamic Programming, CRC Press, Boca Raton, FL.
[26] Mehrotra, S. (1992). On the implementation of a primal-dual interior point method, SIAM Journal on Optimization 2(4): 575–601.
[27] Mesterton-Gibbons, M. (2001). An Introduction to Game Theoretic Modeling, American Mathematical Society, Providence, RI.
[28] Millington, I. and Funge, J. (2009). Artificial Intelligence for Games, Elsevier, Amsterdam/Tokyo.
[29] Modarres, M. (2006). Risk Analysis in Engineering, Taylor Francis Group, Boca Raton, FL.
[30] Nisan, N., Roughgarden, T., Tardos, E. and Vazirani, V. (2007). Algorithmic Game Theory, Cambridge University Press, New York, NY.
[31] Osborne, M. (2004). Algorithmic Game Theory, Oxford University Press, New York, NY.
[32] Pantoja, J. (1998). Differential dynamic programming and Newton’s method, International Journal of Control 47(5): 1539–1553.
[33] Perez, T. (2005). Ship Motion Control, Springer, London.
[34] Pietrzykowski, Z. (2011). The Navigational Decision Support System on a Sea-Going Vessel, Maritime University, Szczecin.
[35] Straffin, P. (2001). Game Theory and Strategy, Scholar, Warsaw.
[36] Szlapczynski, R. and Smierzchalski, R. (2009). Supporting navigator’s decisions by visualizing ship collision risk, Polish Maritime Research 1(59): 83–88.
[37] Szynkiewicz, W. and Błaszczyk, J. (2011). Optimization-based approach to path planning for closed chain robot systems, International Journal of Applied Mathematics and Computer Science 21(4): 659–670, DOI: 10.2478/v10006-011-0052-8.
[38] Tomera, M. (2010). Nonlinear controller design of a ship autopilot, International Journal of Applied Mathematics and Computer Science 20(2): 271–280, DOI: 10.2478/v10006-010-0020-8.
[39] Tomera, M. and Smierzchalski, R. (2006). Sliding controller for ship course steering, Proceedings of the IFAC Conference on Manoeuvering and Control of Marine Crafts, Lisbon, Portugal, pp. 211–219.
[40] Wierzbicki, A. (1984). Models and Sensitivity of Control Systems, Elsevier, Amsterdam.
[41] Witkowska, A., Tomera, M. and Smierzchalski, R. (2007). A backstepping approach to ship course control, International Journal of Applied Mathematics and Computer Science 17(1): 73–85, DOI: 10.2478/v10006-007-0007-2.
[42] Zio, E. (2009). Computational Methods for Reliability and Risk Analysis, Series on Quality, Reliability and Engineering Statistics, Word Scientific, Chennai.