Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_2_a13, author = {Simani, S.}, title = {Residual generator fuzzy identification for automotive diesel engine fault diagnosis}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {419--438}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a13/} }
TY - JOUR AU - Simani, S. TI - Residual generator fuzzy identification for automotive diesel engine fault diagnosis JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 419 EP - 438 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a13/ LA - en ID - IJAMCS_2013_23_2_a13 ER -
%0 Journal Article %A Simani, S. %T Residual generator fuzzy identification for automotive diesel engine fault diagnosis %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 419-438 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a13/ %G en %F IJAMCS_2013_23_2_a13
Simani, S. Residual generator fuzzy identification for automotive diesel engine fault diagnosis. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 419-438. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a13/
[1] Babuška, R. (1998). Fuzzy Modeling for Control, Kluwer Academic Publishers, Boston, MA.
[2] Babuška, R. (2000). Fuzzy Modelling and Identification Toolbox, Version 3.1, Control Engineering Laboratory, Faculty of Information Technology and Systems, Delft University of Technology, Delft, http://lcewww.et.tudelft.nl/˜babuska.
[3] Bonfè, M., Castaldi, P., Mimmo, N. and Simani, S. (2011). Active fault tolerant control of nonlinear systems: The cart-pole example, International Journal of Applied Mathematics and Computer Science 21(3): 441–455, DOI: 10.2478/v10006-011-0033-y.
[4] Bosch, R. (2006). Diesel-Engine Management, 4 Edn., Wiley, Weinheim.
[5] Chen, J. and Patton, R.J. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publishers, Boston, MA.
[6] Ding, S.X. (2008). Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, 1st Edn., Springer, Berlin/Heidelberg.
[7] Fantuzzi, C. and Rovatti, R. (1996). On the approximation capabilities of the homogeneous Takagi–Sugeno model, Proceedings of the 5th IEEE International Conference on Fuzzy Systems, New Orleans, LA, USA, pp. 1067–1072.
[8] Fantuzzi, C., Simani, S., Beghelli, S. and Rovatti, R. (2002). Identification of piecewise affine models in noisy environment, International Journal of Control 75(18): 1472–1485.
[9] Isermann, R. (2005). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, 1st Edn., Springer-Verlag, Weinheim.
[10] Jain, T., Yam`e, J.J. and Sauter, D. (2012). Model-free reconfiguration mechanism for fault tolerance, International Journal of Applied Mathematics and Computer Science 22(1): 125–137, DOI: 10.2478/v10006-012-0009-6.
[11] Korbicz, J., Koscielny, J. M., Kowalczuk, Z. and Cholewa, W. (Eds.) (2004). Fault Diagnosis: Models, Artificial Intelligence, Applications, Springer-Verlag, London.
[12] Ljung, L. (1997). System Identification Toolbox for Use with MATLAB _ User’s Guide, The MathWorks, Inc., Natick, MA.
[13] Ljung, L. (1999). System Identification: Theory for the User, 2nd Edn., Prentice Hall, Englewood Cliffs, NJ.
[14] Marusak, P.M. and Tatjewski, P. (2008). Actuator fault tolerance in control systems with predictive constrained set-point optimizers, International Journal of Applied Mathematics and Computer Science 18(4): 539–551, DOI: 10.2478/v10006-008-0047-2.
[15] Pulkrabek, W.W. (2003). Engineering Fundamentals of the Internal Combustion Engine, 2nd Edn., Prentice Hall, Richmond, TX.
[16] Rovatti, R. (1996). Takagi–Sugeno models as approximators in Sobolev norms: The SISO case, 5th IEEE International Conference on Fuzzy Systems, New Orleans LA, USA, Vol. 2, pp. 1060–1066.
[17] Rovatti, R., Fantuzzi, C. and Simani, S. (2000). High-speed DSP-based implementation of piecewise-affine and piecewise-quadratic fuzzy systems, Signal Processing Journal 80(6): 951–963.
[18] Simani, S. (2007). Fault diagnosis of a simulated industrial gas turbine via identification approach, International Journal of Adaptive Control and Signal Processing 21(4): 326–353, DOI: 10.1002/acs.924.
[19] Simani, S., Fantuzzi, C. and Beghelli, S. (2000). Diagnosis techniques for sensor faults of industrial processes, IEEE Transactions on Control Systems Technology 8(5): 848–855.
[20] Simani, S., Fantuzzi, C. and Patton, R.J. (2003). Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques, Advances in Industrial Control, Vol. 1, Springer-Verlag, London.
[21] Simani, S., Fantuzzi, C., Rovatti, R. and Beghelli, S. (1999). Parameter identification for piecewise linear fuzzy models in noisy environment, International Journal of Approximate Reasoning 1(22): 149–167.
[22] Stamatis, D.H. (2003). Failure Mode and Effect Analysis: FMEA from Theory to Execution, 2nd Edn., ASQ Quality Press, Milwaukee, WI.
[23] Svard, C. and Nyberg, M. (2010a). Residual generators for fault diagnosis using computation sequences with mixed causality applied to automotive systems, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 40(6): 1310–1328, DOI: 10.1109/TSMCA.2010.2049993.
[24] Svard, C. and Nyberg, M. (2010b). Residual generators for fault diagnosis using computation sequences with mixed causality applied to automotive systems, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 40(6): 1310–1328, DOI: 10.1109/TSMCA.2010.2049993.
[25] Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transaction on System, Man and Cybernetics SMC-15(1): 116–132.
[26] Van Huffel, S. and Lemmerling, P. (Eds.) (2002). Total Least Squares and Errors-in-Variables Modeling: Analysis, Algorithms and Applications, 1st Edn., Springer-Verlag, London.
[27] Xu, D., Jiang, B. and Shi, P. (2012). Nonlinear actuator fault estimation observer: An inverse system approach via a T–S fuzzy model, International Journal of Applied Mathematics and Computer Science 22(1): 183–196, DOI: 10.2478/v10006-012-0014-9.