Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_2_a1, author = {Barboteu, M. and Bartosz, K. and Kalita, P.}, title = {An analytical and numerical approach to a bilateral contact problem with nonmonotone friction}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {263--276}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a1/} }
TY - JOUR AU - Barboteu, M. AU - Bartosz, K. AU - Kalita, P. TI - An analytical and numerical approach to a bilateral contact problem with nonmonotone friction JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 263 EP - 276 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a1/ LA - en ID - IJAMCS_2013_23_2_a1 ER -
%0 Journal Article %A Barboteu, M. %A Bartosz, K. %A Kalita, P. %T An analytical and numerical approach to a bilateral contact problem with nonmonotone friction %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 263-276 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a1/ %G en %F IJAMCS_2013_23_2_a1
Barboteu, M.; Bartosz, K.; Kalita, P. An analytical and numerical approach to a bilateral contact problem with nonmonotone friction. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 263-276. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a1/
[1] Alart, P., Barboteu, M. and Lebon, F. (1997). Solutions of frictional contact problems using an EBE preconditioner, Computational Mechanics 30(4): 370–379.
[2] Alart, P. and Curnier, A. (1991). A mixed formulation for frictional contact problems prone to Newton like solution methods, Computer Methods in Applied Mechanics and Engineering 92(3): 353–375.
[3] Baniotopoulos, C., Haslinger, J. and Moravkova, Z. (2005). Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities, Applications of Mathematics 50(1): 1–25.
[4] Barboteu, M., Han, W. and Sofonea, M. (2002). Numerical analysis of a bilateral frictional contact problem for linearly elastic materials, IMA Journal of Numerical Analysis 22(3): 407–436.
[5] Barboteu, M. and Sofonea, M. (2009). Analysis and numerical approach of a piezoelectric contact problem, Annals of the Academy of Romanian Scientists: Mathematics and Its Applications 1(1): 7–31.
[6] Clarke, F.H. (1983). Optimization and Nonsmooth Analysis, Wiley Interscience, New York, NY.
[7] Denkowski, Z., Migórski, S. and Papageorgiou, N.S. (2003). An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, MA/Dordrecht/London/New York, NY.
[8] Duvaut, G. and Lions, J.L. (1976). Inequalities in Mechanics and Physics, Springer-Verlag, Berlin.
[9] Franc, V. (2011). Library for quadratic programming, http://cmp.felk.cvut.cz/˜xfrancv/libqp/html.
[10] Han, W. and Sofonea, M. (2002). Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, American Mathematical Society, Providence, RI/International Press, Sommerville, MA.
[11] Haslinger, J., Miettinen, M. and Panagiotopoulos, P.D. (1999). Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications, Kluwer Academic Publishers, Boston, MA/Dordrecht/London.
[12] Hild, P. and Renard, Y. (2007). An error estimate for the Signorini problem with Coulomb friction approximated by finite elements, SIAM Journal of Numerical Analysis 45(5): 2012–2031.
[13] Ionescu, I.R. and Nguyen, Q.L. (2002). Dynamic contact problems with slip-dependent friction in viscoelasticity, International Journal of Applied Mathematics and Computer Science 12(1): 71–80.
[14] Ionescu, I.R., Nguyen, Q.L. andWolf, S. (2003). Slip-dependent friction in dynamic elasticity, Nonlinear Analysis 53(3–4): 375–390.
[15] Ionescu, I.R. and Paumier, J.C. (1996). On the contact problem with slip displacement dependent friction in elastostatics, International Journal of Engineering Sciences 34(4): 471–491.
[16] Ionescu, I.R. and Sofonea, M. (1993). Functional and Numerical Methods in Viscoplasticity, Oxford University Press, Oxford.
[17] Khenous, Y., Laborde, P. and Renard, Y. (2006a). On the discretization of contact problems in elastodynamics, in P. Wriggers and U. Nackenhorst (Eds.), Analysisand Simulation of Contact Problems, Lecture Notes in Applied and Computational Mechanics, Vol. 27, Springer, Berlin/Heidelberg, pp. 31–38.
[18] Khenous, H.B., Pommier, J. and Renard, Y. (2006b). Hybrid discretization of the Signorini problem with coulomb friction. theoretical aspects and comparison of some numerical solvers, Applied Numerical Mathematics 56(2): 163–192.
[19] Laursen, T. (2002). Computational Contact and ImpactMechanics, Springer, Berlin/Heidelberg.
[20] Mäkelä, M.M. (1990). Nonsmooth Optimization, Theory and Applications with Applications to Optimal Control, Ph.D. thesis, University of Jyväskylä, Jyväskylä.
[21] Mäkelä, M.M. (2001). Survey of bundle methods for nonsmooth optimization, Optimization Methods and Software 17(1): 1–29.
[22] Mäkelä, M.M., Miettinen, M., Lukšan, L. and Vlček, J. (1999). Comparing nonsmooth nonconvex bundle methods in solving hemivariational inequalities, Journal of Global Optimization 14(2): 117–135.
[23] Miettinen, M. (1995). On contact problems with nonmonotone contact conditions and their numerical solution, in M.H. Aliabadi and C. Alessandri (Eds.), Contact Mechanics II: Computational Techniques, Transactions on Engineering Sciences, Vol. 7, WIT Press, Southampton/Boston, MA, pp. 167–174.
[24] Migórski, S. and Ochal, A. (2005). Hemivariational inequality for viscoelastic contact problem with slip-dependent friction, Nonlinear Analysis 61(1–2): 135–161.
[25] Mistakidis, E.S. and Panagiotopulos, P.D. (1997). Numerical treatment of problems involving nonmonotone boundary or stress-strain laws, Computers Structures 64(1–4): 553–565.
[26] Mistakidis, E.S. and Panagiotopulos, P.D. (1998). The search for substationary points in the unilateral contact problems with nonmonotone friction, Mathematical and Computer Modelling 28(4–8): 341–358.
[27] Naniewicz, Z. and Panagiotopoulos, P.D. (1995). Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, Inc., New York, NY/Basel/Hong Kong.
[28] Nečas, J. and Hlavaček, I. (1981). Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction, Elsevier, Amsterdam.
[29] Panagiotopoulos, P.D. (1985). Inequality Problems in Mechanics and Applications, Birkhauser, Basel.
[30] Rabinowicz, E. (1951). The nature of the static and kinetic coefficients of friction, Journal of Applied Physics 22(11): 1373–1379.
[31] Shillor, M., Sofonea, M. and Telega, J.J. (2004). Models and Analysis of Quasistatic Contact, Springer, Berlin.
[32] Tzaferopoulos, M.A., Mistakidis, E.S., Bisbos, C.D. and Panagiotopulos, P.D. (1995). Comparison of two methods for the solution of a class of nonconvex energy problems using convex minimization algorithms, Computers Structures 57(6): 959–971.
[33] Wriggers, P. (2002). Computational Contact Mechanics, Wiley, Chichester.