Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_2_a0, author = {Chen, Q. and Teng, Z. and Hu, Z.}, title = {Bifurcation and control for a discrete-time prey{\textendash}predator model with {Holling-IV} functional response}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {247--261}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a0/} }
TY - JOUR AU - Chen, Q. AU - Teng, Z. AU - Hu, Z. TI - Bifurcation and control for a discrete-time prey–predator model with Holling-IV functional response JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 247 EP - 261 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a0/ LA - en ID - IJAMCS_2013_23_2_a0 ER -
%0 Journal Article %A Chen, Q. %A Teng, Z. %A Hu, Z. %T Bifurcation and control for a discrete-time prey–predator model with Holling-IV functional response %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 247-261 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a0/ %G en %F IJAMCS_2013_23_2_a0
Chen, Q.; Teng, Z.; Hu, Z. Bifurcation and control for a discrete-time prey–predator model with Holling-IV functional response. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 2, pp. 247-261. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_2_a0/
[1] Busłowicz, M. (2012). Robust stability of positive continuous-time linear systems with delays, International Journal of Applied Mathematics and Computer Science 20(4): 665–670, DOI: 10.2478/v10006-010-0049-8.
[2] Busłowicz, M. and Ruszewski, A. (2012). Computer method for stability analysis of the Roesser type model of 2D continous-discrete linear systems, International Journal of Applied Mathematics and Computer Science 22(2): 401–408, DOI: 10.2478/v10006-012-0030-9.
[3] Duda, J. (2012). A Lyapunov functional for a system with a time-varying delay, International Journal of Applied Mathematics and Computer Science 22(2): 327–337, DOI: 10.2478/v10006-012-0024-7.
[4] Fan, Y. and Li, W. (2004). Permanence for a delayed discrete ratio-dependent predator–prey system with Holling type functional response, Journal of Mathematical Analysis and Applications 299(2): 357–374.
[5] Freedman, H.I. (1976). Graphical stability, enrichment, and pest control by a natural enemy, Mathematical Biosciences 31(3–4): 207–225.
[6] Freedman, H.I. (1980). Deterministic Mathematical Models in Population Ecologys, Marcel Dekker, New York, NY.
[7] Grebogi, C., Ott, E. and Yorke, J.A. (1983). Crises, sudden changes in chaotic attractors, and transient chaos, Physica D: Nonlinear Phenomena 7(1–3): 181–200.
[8] Grebogi, C., Ott, E. and Yorke, J.A. (1986). Critical exponent of chaotic transients in nonlinear dynamical systems, Physical Review Letters 57(11): 1284–1287.
[9] Grebogi, C., Ott, E., Romeiras, F. and Yorke, J.A. (1987). Critical exponents for crisis-induced intermittency, Physical Review A 36(11): 5365–5380.
[10] Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, NY.
[11] Hainzl, J. (1988). Stability and Hopf bifurcation in a predator–prey system with several parameters, SIAM Journal on Applied Mathematics 48(1): 170–190.
[12] Harrison, G.W. (1986). Multiple stable equilibria in a predator–prey system, Bulletin of Mathematical Biology 48(2): 137–148.
[13] He, Z. and Lai, X. (2011). Bifurcation and chaotic behavior of a discrete-time predator–prey system, Nonlinear Analysis: Real World Applications 12(1): 403–417.
[14] Holling, C.S. (1965). The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada 97(45): 1–60.
[15] Hsu, S.B. (1978). The application of the Poincare-transform to the Lotka–Volterra model, Journal of Mathematical Biology 6(1): 67–73.
[16] Hu, Z., Teng, Z. and Zhang, L. (2011). Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional response, Nonlinear Analysis: Real World Applications 12(4): 2356–2377.
[17] Huang, J. and Xiao, D. (2004). Analyses of bifurcations and stability in a predator–prey system with Holling type-IV functional response, Acta Mathematicae Applicatae Sinica 20(1): 167–178.
[18] Jing, Z. (1989). Local and global bifurcations and applications in a predator–prey system with several parameters, Systems Science and Mathematical Sciences 2(4): 337–352.
[19] Jing, Z. , Chang, Y. and Guo, B. (2004). Bifurcation and chaos in discrete FitzHugh–Nagumo system, Chaos, Solitons Fractals 21(3): 701–720.
[20] Jing, Z. and Yang, J. (2006). Bifurcation and chaos in discrete-time predator–prey system, Chaos, Solitons Fractals 27(1): 259–277.
[21] Kazarinoff, N.D. and Van Den Driessche, P. (1978). A model predator–prey system with functional response, Mathematical Biosciences 39(1–2): 125–134.
[22] Kuznetsov, Y.A. (1998). Elements of Applied Bifurcation Theory, Springer-Verlag, Berlin.
[23] Liu, X. and Xiao, D. (2007). Complex dynamic behaviors of a discrete-time predator–prey system, Chaos, Solitons Fractals 32(1): 80–94.
[24] Liu, W., Li, D. and Yao, T. (2010). Qualitative analysis of Holling IV predator–prey system with double density retrie, Natural Sciences Journal of Harbin Normal University 26(6): 8–12, (in Chinese).
[25] Ott, E., Grebogi, C. and Yorke, J.A. (1990). Controlling chaos, Physical Review Letters 64(11): 1196–1199.
[26] Raja, R., Sakthivel, R., Anthoni, S.M. and Kim, H. (2011). Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays, International Journal of Applied Mathematics and Computer Science 21(1): 127–135, DOI: 10.2478/v10006-011-0009-y.
[27] Robinson, C. (1999). Dynamical Systems, Stability, Symbolic Dynamics and Chaos, 2nd Edn., CRC Press, Boca Raton, FL/London/New York, NY/Washington, DC.
[28] Ruan, S. and Xiao, D. (2001). Global analysis in a predator–prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics 61(4): 1445–1472.
[29] Scholl, E. and Schuster, H.G. (2008). Handbook of Chaos Control, Wiley-VCH, Weinheim.
[30] Tong, Y., Liu, Z. and Wang, Y. (2012). Existence of period solutions for a predator–prey system with sparse effect and functional response on time scales, Communications in Nonlinear Science and Numerical Simulation 17(8): 3360–3366.
[31] Wang, Y., Jing, Z. and Chan, K. (1999). Multiple limit cycles and global stability in predator–prey model, Acta Mathematicae Applicatae Sinica 15(2): 206–219.
[32] Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, Berlin.
[33] Wolkowicz, G.S.K. (1988). Bifurcation analysis of a predator-prey system involving group defence, SIAM Journal on Applied Mathematics 48(3): 592–606.
[34] Xu, C., Liao, M. and He, X. (2011). Stability and Hopf bifurcation analysis for a Lotka–Volterra predator–prey model with two delays, International Journal of Applied Mathematics and Computer Science 21(1): 97–107, DOI: 10.2478/v10006-011-0007-0.
[35] Zhang, Q., Yang, L. and Liao, D. (2011). Existence and exponential stability of a periodic solution for fuzzy cellar neural networks with time-varying delays, International Journal of Applied Mathematics and Computer Science 21(4): 649–658, DOI: 10.2478/v10006-011-0051-9.