Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_1_a9, author = {Bian, J. and Peng, H. and Xing, J. and Liu, Z. and Li, H.}, title = {An efficient algorithm for estimating the parameters of superimposed exponential signals in multiplicative and additive noise}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {117--129}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a9/} }
TY - JOUR AU - Bian, J. AU - Peng, H. AU - Xing, J. AU - Liu, Z. AU - Li, H. TI - An efficient algorithm for estimating the parameters of superimposed exponential signals in multiplicative and additive noise JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 117 EP - 129 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a9/ LA - en ID - IJAMCS_2013_23_1_a9 ER -
%0 Journal Article %A Bian, J. %A Peng, H. %A Xing, J. %A Liu, Z. %A Li, H. %T An efficient algorithm for estimating the parameters of superimposed exponential signals in multiplicative and additive noise %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 117-129 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a9/ %G en %F IJAMCS_2013_23_1_a9
Bian, J.; Peng, H.; Xing, J.; Liu, Z.; Li, H. An efficient algorithm for estimating the parameters of superimposed exponential signals in multiplicative and additive noise. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 1, pp. 117-129. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a9/
[1] Bai, Z.D., Rao, C.R., Chow M. and Kundu, D. (2003). An efficient algorithm for estimating the parameters of superimposed exponential signals, Journal of Statistical Planning and Inference 110(1–2): 23–34.
[2] Besson, B. and Castanie, F. (1993). On estimating the frequency of a sinusoid in auto-regressive multiplicative noise, Signal Processing 30(1): 65–83.
[3] Bian, J., Li, H. and Peng, H. (2009). An efficient and fast algorithm for estimating the frequencies of superimposed exponential signals in zero-mean multiplicative and additive noise, Journal of Statistical Computation and Simulation 74(12): 1407–1423.
[4] Bian, J., Li, H. and Peng, H. (2009). An efficient and fast algorithm for estimating the frequencies of superimposed exponential signals in multiplicative and additive noise, Journal of Information and Computational Science 6(4): 1785–1797.
[5] Bloomfield, P. (1976). Fourier Analysis of Time Series: An Introduction, Wiley, New York, NY.
[6] Bressler, Y. and MaCovski, A. (1986). Exact maximum likelihood parameters estimation of superimposed exponential signals in noise, IEEE Transactions on Signal Processing 34(5): 1081–1089.
[7] Chan, K.W. and So, H.C. (2004). Accurate frequency estimation for real harmonic sinusoids, IEEE Signal Processing Letters 11(7): 609–612.
[8] Dwyer, R.F. (1991). Fourth-order spectra of Gaussian amplitude modulated sinusoids, Journal of the Acoustical Society of America 90(2): 918–926.
[9] Fuller, W.A. (1996). Introduction to Statistical Time Series, 2nd Edn., Wiley, New York, NY.
[10] Gawron, P., Klamka, J. and Winiarczyk, R. (2012). Noise effects in the quantum search algorithm from the viewpoint of computational complexity, International Journal of Applied Mathematics and Computer Science 22(2): 493–499, DOI: 10.2478/v10006-012-0037-2.
[11] Ghogho, M., Swami, A. and Garel, B. (1999). Performance analysis of cyclic statistics for the estimation of harmonics in multiplicative and additive noise, IEEE Transactions on Signal Processing 47(12): 3235–3249.
[12] Ghogho, M., Swami, A. and Nandi, A.K. (1999). Non-linear least squares estimation for harmonics in multiplicative and additive noise, Signal Processing 78(1): 43–60.
[13] Giannakis, G.B. and Zhou, G. (1995). Harmonics in multiplicative and additive noise: Parameter estimation using cyclic statistics, IEEE Transactions on Signal Processing 43(9): 2217–2221.
[14] Hartley, H.O. (1961). The modified Gauss–Newton method for the fitting of non-linear regression functions by least squares, Technometrics 3(2): 269–280.
[15] Hwang, J.K. and Chen, Y.C. (1993). A combined detection-estimation algorithm for the harmonic-retrieval problem, Signal Processing 30(2): 177–197.
[16] Jennrich, R.I. (1969). Asymptotic properties of non-linear least squares estimators, The Annals of Mathematical Statistics 40(2): 633–643.
[17] Kannan, N. and Kundu, D. (1994). On modified EVLP and ML methods for estimating superimposed exponential signals, Signal Processing 39(3): 223–233.
[18] Koko, J. (2004). Newton’s iteration with a conjugate gradient based decomposition method for an elliptic PDE with a nonlinear boundary condition, International Journal of Applied Mathematics and Computer Science 14(1): 13–18.
[19] Kundu, D. (1997). Asymptotic theory of the least squares estimators of sinusoidal signals, Statistics 30(3): 221–238.
[20] Kundu, D., Bai, Z., Nandi, S. and Bai, L. (2011). Super efficient frequency estimation, Journal of Statistical Planning and Inference 141(8): 2576–2588.
[21] Kundu, D. and Mitra, A. (1995). Consistent method of estimating superimposed exponential signals, Scandinavian Journal of Statistics 22(1): 73–82.
[22] Kundu, D. and Mitra, A. (1999). On asymptotic behavior of the least squares estimators and the confidence intervals of the superimposed exponential signals, Signal Processing 72(2): 129–139.
[23] Li, J. and Stoica, P. (1996). Efficient mixed-spectrum estimation with applications to target feature extraction, IEEE Transactions on Signal Processing 44(2): 281–295.
[24] Mangulis, V. (1965). Handbook of Series for Scientists and Engineers, Academic Press, New York, NY.
[25] Nandi, S. and Kundu, D. (2006). An efficient and fast algorithm for estimating the parameters of sinusoidal signals, Sankhya 68(2): 283–306.
[26] Osborne, M.R. and Smyth, G.K. (1995). A modified Prony algorithm for fitting sum of exponential functions, SIAM Journal on Scientific and Statistical Computing 16(1): 119–138.
[27] Peng, H., Li, H. and Bian, J. (2009). Asymptotic behavior of least squares estimators for harmonics in multiplicative and additive noise, Journal of Information and Computational Science 6(4): 1847–1860.
[28] Prasath, V.B.S. (2011). A well-posed multiscale regularization scheme for digital image denoise, International Journal of Applied Mathematics and Computer Science 21(4): 769–777, DOI: 10.2478/v10006-011-0061-7.
[29] Quinn, B.G. (1994). Estimating frequency by interpolation using Fourier coefficients, IEEE Transactions on Signal Processing 42(5): 1264–1268.
[30] Rice, J. A. and Rosenblatt, M. (1988). On frequency estimation, Biometrika 75(3): 477–484.
[31] Roy, R. and Kailath, T. (1989). ESPRIT: Estimation of signal parameters via rotational invariance techniques, IEEE Transactions on Signal Processing 37(7): 984–995.
[32] Sadler, B., Giannakis, G. and Shamsunder, S. (1995). Noise subspace techniques in non-Gaussian noise using cumulants, IEEE Transactions on Aerospace and Electronic Systems 31(3): 1009–1018.
[33] Swami, A. (1994). Multiplicative noise models: Parameter estimation using cumulants, Signal Processing 36(3): 355–373.
[34] Tufts, D.W. and Kumaresan, R. (1982). Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood, Proceedings of IEEE 70(9): 975–989.
[35] Van Trees, H.L. (1971). Detection, Estimation and Modulation Theory, Part III: Radar-Sonar Signal Processing and Gaussian Signals in Noise, Wiley, New York, NY.
[36] Ypma, T.J. (1995). Historical development of the Newton–Raphson method, SIAM Review 37(4): 531–551.
[37] Zhang, X.D., Liang, Y.C. and Li, Y.D. (1994). A hybrid approach to harmonic retrieval in non-Gaussian ARMA noise, IEEE Transactions on Information Theory 40(7): 1220–1226.
[38] Zhang, Y. and Wang, S.X. (2000). Harmonic retrieval in colored non-Gaussian noise using cumulants, IEEE Transactions on Signal Processing 48(3): 982–987.
[39] Zhou, G. and Giannakis, G.B. (1994). On estimating random amplitude modulated harmonics using higher-order spectra, IEEE Journal of Oceanic Engineering 19(4): 529–539.
[40] Zhou, G. and Giannakis, G.B. (1995). Harmonics in multiplicative and additive noise: Performance analysis of cyclic estimators, IEEE Transactions on Signal Processing 43(6): 1445–1460.