Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_1_a5, author = {Zubowicz, T. and Brdy\'s, M. A.}, title = {Stability of softly switched multiregional dynamic output controllers with a static antiwindup filter: a discrete-time case}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {65--73}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a5/} }
TY - JOUR AU - Zubowicz, T. AU - Brdyś, M. A. TI - Stability of softly switched multiregional dynamic output controllers with a static antiwindup filter: a discrete-time case JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 65 EP - 73 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a5/ LA - en ID - IJAMCS_2013_23_1_a5 ER -
%0 Journal Article %A Zubowicz, T. %A Brdyś, M. A. %T Stability of softly switched multiregional dynamic output controllers with a static antiwindup filter: a discrete-time case %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 65-73 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a5/ %G en %F IJAMCS_2013_23_1_a5
Zubowicz, T.; Brdyś, M. A. Stability of softly switched multiregional dynamic output controllers with a static antiwindup filter: a discrete-time case. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 1, pp. 65-73. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a5/
[1] Castelan, E., Leite, V., Miranda, M. and Moraes, V. (2010). Synthesis of output feedback controllers for a class of nonlinear parameter-varying discrete-time systems subject to actuator limitations, Proceedings of the American Control Conference, ACC 2010, Baltimore, MD, USA, pp. 4235–4240.
[2] Castelan, E., Moreno, U. and de Pieri, E. (2006). Absolute stabilisation of discrete-time systems with sector bounded nonlinearity under control saturations, IEEE International Symposium on Circuits and Systems, ISCAS 2006, Island of Kos, Greece, pp. 3105–3108.
[3] Domański, P., Brdyś, M.A. and Tatjewski, P. (1999). Design and stability of fuzzy logic multi-regional output controllers, International Journal of Applied Mathematics and Computer Science 9(4): 883–897.
[4] Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems, IEEE Transaction on Fuzzy Systems 14(5): 676–697, DOI: 10.1109/TFUZZ.2006.883415.
[5] Gomes da Silva, Jr., J.M., Corso, J. and Castelan, E. (2008). Output feedback stabilization for systems presenting sector-bounded nonlinearities and saturating inputs, Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 14109–14114.
[6] Gomes da Silva, Jr., J.M. and Tarbouriech, S. (2006). Anti-windup design with guaranteed regions of stability for discrete-time linear systems, System Control Letters 55(3): 184–192, DOI: 10.1016/j.sysconle.2005.07.001.
[7] Han, Y., Brdyś, M. and Piotrowski, R. (2008). Nonlinear PI control for dissolved oxygen tracking at wastewater treatment plant, Proceedings of the IFAC World Congress, IFAC WC 2008, Seoul, Korea, DOI: 10.3182/20080706-5-KR-1001.0477.
[8] Khalil, H. (1996). Nonlinear Systems, 2nd Edn., Prentice-Hall, Upper Saddle River, NJ.
[9] Klug, M., Castelan, E. and Leite, V. (2011). A dynamic compensator for parameter varying systems subject to actuator limitations applied to a T–S fuzzy system, Proceedings of the IFAC World Congress, IFAC WC 2011, Milan, Italy, pp. 14495–14500.
[10] Qi, R. and Brdyś, M. (2008). Stable indirect adaptive control based on discrete-time T–S fuzzy model, Fuzzy Sets and Systems 159(8): 900–925, DOI: 10.1016/j.fss.2007.08.009.
[11] Qi, R. and Brdyś, M.A. (2009). Indirect adaptive controller based on a self-structuring fuzzy system for nonlinear modeling and control, International Journal of Applied Mathematics and Computer Science 19(4): 619–630, DOI: 10.2478/v10006-009-0049-8.
[12] Rhee, B.-J. and Won, S. (2006). A new fuzzy Lyapunov function approach for Takagi–Sugeno fuzzy control systems design, Fuzzy Sets and Systems 157(9): 1211–1228, DOI:10.1016/j.fss.2005.12.020.
[13] Tanaka, K., Ikeda, T. and Wang, H. (1998). Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based design, Fuzzy Sets and Systems 6(2): 250–265, DOI: 10.1109/91.669023.
[14] Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems 45(2): 135–156, DOI: 10.1016/0165-0114(92)90113-I.
[15] Tatjewski, P. (2007). Advanced Control of Industrial Processes: Structures and Algorithms, Springer, London.
[16] Wang, Y., Sun, Z. and Sun, F. (2004). Stability analysis and control of discrete-time fuzzy systems: A fuzzy Lyapunov function approach, Proceedings of the 5th Asian Control Conference, Melbourne, Australia, pp. 1855–1860, DOI: 10.1109/ASCC.2004.184913.
[17] Xiu, Z. and Ren, G. (2005). Stability analysis and systematic design of Takagi–Sugeno fuzzy control systems, Fuzzy Sets and Systems 151(1): 119–138, DOI: 10.1016/j.fss.2004.04.008.
[18] Yaochu, J. (2002). Advanced Fuzzy Systems Design and Applications, Physica-Verlag, Heidelberg/New York, NY.
[19] Zubowicz, T., Brdyś, M. and Piotrowski, R. (2010). Intelligent PI controller and its application to dissolved oxygen tracking problem, Journal of Automation, Mobile Robotics Intelligent Systems 4(3): 16–24.