Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_1_a4, author = {Ba\'nka, S. and Dworak, P. and Jaroszewski, K.}, title = {Linear adaptive structure for control of a nonlinear {MIMO} dynamic plant}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {47--63}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a4/} }
TY - JOUR AU - Bańka, S. AU - Dworak, P. AU - Jaroszewski, K. TI - Linear adaptive structure for control of a nonlinear MIMO dynamic plant JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 47 EP - 63 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a4/ LA - en ID - IJAMCS_2013_23_1_a4 ER -
%0 Journal Article %A Bańka, S. %A Dworak, P. %A Jaroszewski, K. %T Linear adaptive structure for control of a nonlinear MIMO dynamic plant %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 47-63 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a4/ %G en %F IJAMCS_2013_23_1_a4
Bańka, S.; Dworak, P.; Jaroszewski, K. Linear adaptive structure for control of a nonlinear MIMO dynamic plant. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a4/
[1] Antoniou, E. and Vardulakis, A. (2005). On the computation and parametrization of proper denominator assigning compensators for strictly proper plants, IMA Journal of Mathematical Control and Information 22(1): 12–25.
[2] Aström, K. and Wittenmark, B. (1995). Adaptive Control, Addison Wesley, Reading, MA.
[3] Bańka, S. (2007). Multivariable Control Systems: A Polynomial Approach, Szczecin University of Technology Press, Szczecin, (in Polish).
[4] Bańka, S., Dworak, P. and Brasel, M. (2010a). On control of nonlinear dynamic MIMO plants using a switchable structure of linear modal controllers, Measurement Automation and Monitoring 56(5): 385–391, (in Polish).
[5] Bańka, S., Dworak, P., Brasel, M. and Latawiec, K.J. (2010b). A switched structure of linear MIMO controllers for positioning of a drillship on a sea surface, Proceedings of the 15th International Conference on Methods and Models in Automation and Robotics, MMAR 2010, Międzyzdroje, Poland, pp. 249–254.
[6] Bańka, S., Dworak, P. and Jaroszewski, K. (2011a). Adaptive controller of ships position based on a nonlinear model of drillship motions in 3DOF, in K. Malinowski and R. Dindorf (Eds.), Advances of Automatics and Robotics, Kielce University of Technology Press, Kielce, pp. 21–26, (in Polish).
[7] Bańka, S., Dworak, P. and Jaroszewski, K. (2011b). Problems associated with realization of neural modal controllers designed to control multivariable dynamic systems, in K. Malinowski and R. Dindorf (Eds.), Advances of Automatics and Robotics, Kielce University of Technology Press, Kielce, pp. 27–41, (in Polish).
[8] Bańka, S. and Latawiec, K.J. (2009). On steady-state error-free regulation of right-invertible LTI MIMO plants, Proceedings of the 14th International Conference on Methods and Models in Automation and Robotics, MMAR 2009, Międzyzdroje, Poland, DOI: 10.3182/20090819-3-PL-3002.00066.
[9] Callier, F.M. and Kraffer, F. (2005). Proper feedback compensators for a strictly proper plant by polynomial equations, International Journal of Applied Mathematics and Computer Science 15(4): 493–507.
[10] Fabri, S. and Kadrikamanathan, V. (2001). Functional Adaptive Control. An Intelligent Systems Approach, Springer-Verlag, Berlin.
[11] Fossen, T. I. and Strand, J.P. (1999). A tutorial on nonlinear backstepping: Applications to ship control, Modelling, Identification and Control 20(2): 83–135.
[12] Gierusz, W. (2005). Synthesis of Multivariable Control Systems for Precise Steering of Ships Motion Using Selected Robust Systems Design Methods, Gdynia Maritime Academy Press, Gdynia, (in Polish).
[13] Kaczorek, T. (1992). Linear Control Systems: Analysis of Multivariable Systems, John Wiley and Sons, New York, NY.
[14] Pedro, J.O. and Dahunsi, O.A. (2011). Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system, International Journal of Applied Mathematics and Computer Science 21(1): 137–147, DOI: 10.2478/v10006-011-0010-5.
[15] Tatjewski, P. (2007). Advanced Control of Industrial Processes, Springer-Verlag, London.
[16] Tomera, M. (2010). Nonlinear controller design of a ship autopilot, International Journal of Applied Mathematics and Computer Science 20(2): 271–280, DOI: 10.2478/v10006-010-0020-8.
[17] Tzirkel-Hancock, E. and Fallside, F. (1992). Stable control of nonlinear systems using neural networks, International Journal of Robust and Nonlinear Control 2(1): 63–86.
[18] Vidyasagar, M. (1985). Control System Synthesis: A Factorization Approach, MIT Press, Cambrigde, MA.
[19] Wise, D.A. and English, J.W. (1975). Tank and wind tunnel tests for a drill-ship with dynamic position control, Offshore Technology Conference, Dallas, TX, USA, pp. 103–118.
[20] Witkowska, A., Tomera, M. and Śmierzchalski, R. (2007). A backstepping approach to ship course control, International Journal of Applied Mathematics and Computer Science 17(1): 73–85, DOI: 10.2478/v10006-007-0007-2.
[21] Wolovich, W.A. (1974). Linear Multivariable Systems, Springer-Verlag, New York, NY.
[22] Zhai, G. and Xu, X. (2010). A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching, International Journal of Applied Mathematics and Computer Science 20(2): 249–259, DOI: 10.2478/v10006-010-0018-2.
[23] Zwierzewicz, Z. (2008). Nonlinear adaptive tracking-control synthesis for general linearly parametrized systems, in J.M. Ramos Arreguin (Ed.), Automation and Robotics, InTech, pp. 375–388, DOI: 10.5772/6116.