Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_1_a14, author = {Yan, F. and Dridi, M. and El Moudni, A.}, title = {An autonomous vehicle sequencing problem at intersections: {A} genetic algorithm approach}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {183--200}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a14/} }
TY - JOUR AU - Yan, F. AU - Dridi, M. AU - El Moudni, A. TI - An autonomous vehicle sequencing problem at intersections: A genetic algorithm approach JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 183 EP - 200 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a14/ LA - en ID - IJAMCS_2013_23_1_a14 ER -
%0 Journal Article %A Yan, F. %A Dridi, M. %A El Moudni, A. %T An autonomous vehicle sequencing problem at intersections: A genetic algorithm approach %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 183-200 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a14/ %G en %F IJAMCS_2013_23_1_a14
Yan, F.; Dridi, M.; El Moudni, A. An autonomous vehicle sequencing problem at intersections: A genetic algorithm approach. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 1, pp. 183-200. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a14/
[1] Akpinar, S. and Bayhan, G.M. (2010). A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel workstations and zoning constraints, Engineering Applications of Artificial Intelligence 24(3): 449–457.
[2] Aotani, T., Yamaoka, S. and Tajima, T. (2002). Research development of driving safety support systems, Proceedings of the 41st SICE Annual Conference, Osaka, Japan, Vol. 3, pp. 1792–1797.
[3] Aytug, H., Khouja, M. and Vergara, F.E. (2003). Use of genetic algorithms to solve production and operations management problems: A review, International Journal of Production Research 41(17): 3995–4009.
[4] Belter, D. and Skrzypczyński, P. (2010). A biologically inspired approach to feasible gait learning for a hexapod robot, International Journal of Applied Mathematics and Computer Science 20(1): 69–84, DOI: 10.2478/v10006-010-0005-7.
[5] Bertolazzi, E., Biral, F., Da Lio, M., Saroldi, A. and Tango, F. (2010). Supporting drivers in keeping safe speed and safe distance: The SASPENCE subproject within the European Framework Programme 6 Integrating Project Prevent, IEEE Transactions on Intelligent Transportation Systems 11(3): 525–538.
[6] Chisalita, L. and Shahmehri, N. (2002). A peer-to-peer approach to vehicular communication for the support of traffic safety applications, Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems, Singapore, pp. 336–341.
[7] Dresner, K. and Stone, P. (2004). Multiagent traffic management: A reservation-based intersection control mechanism, Proceedings of Autonomous Agents and Multiagent Systems AAMAS’04, New York, NY, USA, pp. 530–537.
[8] Dresner, K. and Stone, P. (2006). Traffic intersections of the future, Proceedings of the 21st National Conference on Artificial Intelligence, Boston, MA, USA, pp. 1593–1596.
[9] Dridi, M. and Kacem, I. (2004). A hybrid approach for scheduling transportation networks, International Journal of Applied Mathematics and Computer Science 14(3): 397–409.
[10] Fang, F. and Elefteriadou, L. (2006). Development of an optimization methodology for adaptive traffic signal control at diamond interchanges, Journal of Transportation Engineering 132(8): 629–637.
[11] Gradinescu, V., Gorgorin, C., Diaconescu, R., Cristea, V. and Iftode, L. (2007). Adaptive traffic lights using car-to-car communication, Proceedings of the IEEE 65th Vehicular Technology Conference, VTC2007-Spring, Dublin, Ireland, pp. 21–25.
[12] Hall, R. W. and Papageorgiou, M. (1999). Handbook of Transportation Science, Springer, New York, NY/Boston, MA/Dordrecht/London/Moscow.
[13] Hart, E., Ross, P. and Corne, D. (2005). Evolutionary scheduling: A review, Genetic Programming and Evolvable Machines 6(2): 191–220.
[14] Huang, Q. and Miller, R. (2003). The design of reliable protocols for wireless traffic signal systems, Technical report, Department of Computer Science and Engineering, Washington University, Saint Louis, MO.
[15] Hunt, P. (1982). The scoot on-line traffic signal optimization technique, Traffic Engineering Control 23(4): 190–192.
[16] Kashan, A., Karimi, B. and Jenabi, M. (2008). A hybrid genetic heuristic for scheduling parallel batch processing machines with arbitrary job sizes, Computers Operations Research 35(4): 1084–1098.
[17] Kato, S., Tsugawa, S., Tokuda, K., Matsui, T. and Fujii, H. (2002). Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications, IEEE Transactions of Intelligent Transportation Systems 3(3): 155–161.
[18] Lachner, R. (1997). Collision avoidance as a differential game: real-time approximation of optimal strategies using higher derivatives of the value function, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, Vol. 3, pp. 2308–2313.
[19] Li, L. and Wang, F. (2006). Cooperative driving at blind crossings using intervehicle communication, IEEE Transactions on Vehicular Technology 55(6): 1712–1724.
[20] Nadeem, T., Dashtinezhad, S. and Liao, C. (2004). TrafficView: A scalable traffic monitoring system, Proceedings of the IEEE International Conference on Mobile Data Management, Berkeley, CA, USA, pp. 13–26.
[21] Robertson, D. (1969). TRANSYT: A traffic network study tool, Technical Report TRRL-LR-253, Transport and Road Research Laboratory, Crowthorne.
[22] Shladover, S., Desoer, C., Hedrick, J., Tomizuka, M., Walrand, J., Zhang, W.-B., McMahon, D., Peng, H., Sheikholeslam, S. and McKeown, N. (1991). Automated vehicle control developments in the path program, IEEE Transactions on Vehicular Technology 40(1): 114–130.
[23] Shladover, S.E. (2007). Path at 20—History and major milestones, IEEE Transactions on Intelligent Transportation Systems 8(4): 1 22–1 29.
[24] Wang, D., Gen, M. and Cheng, R. (1999). Scheduling grouped jobs on single machine with genetic algorithm, Computers Industrial Engineering 36(2): 309–324.
[25] Webster, F. (1958). Road research technical paper, Technical report, Road Research Laboratory, London.
[26] Witkowska, A., Tomera, M. and Śmierzchalski, R. (2007). A backstepping approach to ship course control, International Journal of Applied Mathematics and Computer Science 17(1): 73–85, DOI: 10.2478/v10006-007-0007-2.
[27] Wu, J., Abbas-Turki, A. and El Moudni, A. (2009). Discrete methods for urban intersection traffic controlling, Proceedings of the IEEE 69th Vehicular Technology Conference, Barcelona, Spain, pp. 1–5.
[28] Xing, L., Chen, Y., Yang, K., Hou, F., Shen, X. and Cai, H.-P. (2008). A hybrid approach combining an improved genetic algorithm and optimization strategies for the asymmetric traveling salesman problem, Engineering Applications of Artificial Intelligence 21(8): 1370–1380.
[29] Yan, F., Dridi, M. and El-Moudni, A. (2009). A branch and bound algorithm for new traffic signal control system of an isolated intersection, 39th International Conference on Computers Industrial Engineering, CIE39, Troyes, France, pp. 999–1004.
[30] Yan, F., Dridi, M. and El-Moudni, A. (2012). New vehicle sequencing algorithms with vehicular infrastructure integration for an isolated intersection, Telecommunication Systems 50(4): 325–337.