Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2013_23_1_a0, author = {Bashkirtseva, I. and Ryashko, L.}, title = {Attainability analysis in the problem of stochastic equilibria synthesis for nonlinear discrete systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {5--16}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a0/} }
TY - JOUR AU - Bashkirtseva, I. AU - Ryashko, L. TI - Attainability analysis in the problem of stochastic equilibria synthesis for nonlinear discrete systems JO - International Journal of Applied Mathematics and Computer Science PY - 2013 SP - 5 EP - 16 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a0/ LA - en ID - IJAMCS_2013_23_1_a0 ER -
%0 Journal Article %A Bashkirtseva, I. %A Ryashko, L. %T Attainability analysis in the problem of stochastic equilibria synthesis for nonlinear discrete systems %J International Journal of Applied Mathematics and Computer Science %D 2013 %P 5-16 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a0/ %G en %F IJAMCS_2013_23_1_a0
Bashkirtseva, I.; Ryashko, L. Attainability analysis in the problem of stochastic equilibria synthesis for nonlinear discrete systems. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/IJAMCS_2013_23_1_a0/
[1] Albert, A. (1972). Regression and theMoore–Penrose Pseudoinverse, Academic Press, New York, NY.
[2] Alexandrov, D. and Malygin, A. (2011). Nonlinear dynamics of phase transitions during seawater freezing with false bottom formation, Oceanology 51(6): 940–948.
[3] Åström, K. (1970). Introduction to the Stochastic Control Theory, Academic Press, New York, NY.
[4] Bashkirtseva, I. and Ryashko, L. (2000). Sensitivity analysis of the stochastically and periodically forced Brusselator, Physica A 278(1–2): 126–139.
[5] Bashkirtseva, I. and Ryashko, L. (2005). Sensitivity and chaos control for the forced nonlinear oscillations, Chaos Solitons and Fractals 26(5): 1437–1451.
[6] Bashkirtseva, I. and Ryashko, L. (2009). Constructive analysis of noise-induced transitions for coexisting periodic attractors of Lorenz model, Physical Review E 79(4): 041106–041114.
[7] Bashkirtseva, I., Ryashko, L. and Stikhin, P. (2010). Noise-induced backward bifurcations of stochastic 3D-cycles, Fluctuation and Noise Letters 9(1): 89–106.
[8] Bashkirtseva, I., Ryashko, L. and Tsvetkov, I. (2009). Sensitivity analysis of stochastic equilibria and cycles for the discrete dynamic systems, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis 17(4): 501–515.
[9] Chen, G. and Yu, X.E. (2003). Chaos Control: Theory and Applications, Springer-Verlag, New York, NY.
[10] Digailova, I. and Kurzhanskii, A. (2004). Attainability problems under stochastic perturbations, Differential Equations 40(11): 1573–1578.
[11] Elaydi, S. (1999). An Introduction to Difference Equations, Springer-Verlag, New York, NY.
[12] Fedotov, S., Bashkirtseva, I. and Ryashko, L. (2004). Stochastic analysis of subcritical amplification of magnetic energy in a turbulent dynamo, Physica A 342(3–4): 491–506.
[13] Fradkov, A. and Pogromsky, A. (1998). Introduction to Control of Oscillations and Chaos, World Scientific Series of Nonlinear Science, Singapore.
[14] Gao, J., Hwang, S. and Liu, J. (1999). When can noise induce chaos?, Physical Review Letters 82(6): 1132–1135.
[15] Gassmann, F. (1997). Noise-induced chaos-order transitions, Physical Review E 55(3): 2215–2221.
[16] Goswami, B. and Basu, S. (2002). Transforming complex multistability to controlled monostability, Physical Review E 66(2): 026214–026223.
[17] Henon, M. (1976). A two-dimensional mapping with a strange attractor, Communications in Mathematical Physics 50(1): 69–77.
[18] Karthikeyan, S. and Balachandran, K. (2011). Constrained controllability of nonlinear stochastic impulsive systems, International Journal of Applied Mathematics and Computer Science 21(2): 307–316, DOI: 10.2478/v10006-011-0023-0.
[19] Kučera, V. (1973). Algebraic theory of discrete optimal control for single-variable systems, III: Closed-loop control, Kybernetika 9(4): 291–312.
[20] Martínez-Zéregaa, B. and Pisarchik, A. (2002). Stochastic control of attractor preference in a multistable system, Communications in Nonlinear Science and Numerical Simulation 17(11): 4023–4028.
[21] Matsumoto, K. and Tsuda, I. (1983). Noise-induced order, Journal of Statistical Physics 31(1): 87–106.
[22] McDonnell, M., Stocks, N., Pearce, C. and Abbott, D. (2008). Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization, Cambridge University Press, Cambridge.
[23] Mil’shtein, G. and Ryashko, L. (1995). A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations, Journal of Applied Mathematics and Mechanics 59(1): 47–56.
[24] Nayfeh, A. and Balachandran, B. (2006). Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods, Wiley, New York, NY.
[25] Ott, E., Grebogi, C. and Yorke, J. (1990). Controlling chaos, Physical Review Letters 64(11): 1196–1199.
[26] Ryagin, M. and Ryashko, L. (2004). The analysis of the stochastically forced periodic attractors for Chua’s circuit, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 14(11): 3981–3987.
[27] Ryashko, L. (1996). The stability of stochastically perturbed orbital motions, Journal of Applied Mathematics and Mechanics 60(4): 579–590.
[28] Ryashko, L. and Bashkirtseva, I. (2011a). Analysis of excitability for the FitzHugh–Nagumo model via a stochastic sensitivity function technique, Physical Review E 83(6): 061109–061116.
[29] Ryashko, L. and Bashkirtseva, I. (2011b). Control of equilibria for nonlinear stochastic discrete-time systems, IEEE Transactions on Automatic Control 56(9): 2162–2166.
[30] Sanjuan, M. and Grebogi, C. (2010). Recent Progress in Controlling Chaos, World Scientific, Singapore.
[31] Wonham, W. (1979). Linear Multivariable Control: A Geometric Approach, Springer-Verlag, Berlin.
[32] Zhirabok, A. and Shumsky, A. (2012). An approach to the analysis of observability and controllability in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science 22(3): 507–522, DOI: 10.2478/v10006-012-0038-1.