A modified state variable diagram method for determination of positive realizations of linear continuous-time systems with delays
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 4, pp. 897-905.

Voir la notice de l'article provenant de la source Library of Science

A new modified state variable diagram method is proposed for determination of positive realizations of linear continuous-time systems with delays in state and input vectors. Using the method, it is possible to find a positive realization with reduced numbers of delays for a given transfer matrix. Sufficient conditions for the existence of positive realizations of given proper transfer matrices are established. The proposed method is demonstrated on numerical examples.
Keywords: state diagram method, determination, linear, continuous time, delay, realization
Mots-clés : oznaczanie, liniowy układ ciągły, opóźnienie, realizacja dodatnia
@article{IJAMCS_2012_22_4_a8,
     author = {Kaczorek, T.},
     title = {A modified state variable diagram method for determination of positive realizations of linear continuous-time systems with delays},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {897--905},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a8/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - A modified state variable diagram method for determination of positive realizations of linear continuous-time systems with delays
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2012
SP  - 897
EP  - 905
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a8/
LA  - en
ID  - IJAMCS_2012_22_4_a8
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T A modified state variable diagram method for determination of positive realizations of linear continuous-time systems with delays
%J International Journal of Applied Mathematics and Computer Science
%D 2012
%P 897-905
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a8/
%G en
%F IJAMCS_2012_22_4_a8
Kaczorek, T. A modified state variable diagram method for determination of positive realizations of linear continuous-time systems with delays. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 4, pp. 897-905. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a8/

[1] Benvenuti L. and Farina L. (2004). A tutorial on the positive realization problem, IEEE Transactions on Automatic Control 49(5): 651-664.

[2] Farina L. and Rinaldi S. (2000). Positive Linear Systems, Theory and Applications, J. Wiley, New York, NY.

[3] Kaczorek T. (1992). Linear Control Systems, Vol.1, Research Studies Press, J. Wiley, New York, NY.

[4] Kaczorek T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.

[5] Kaczorek T. (2004). Realization problem for positive discrete-time systems with delay, System Science 30(4): 117-130.

[6] Kaczorek T. (2005). Positive minimal realizations for singular discrete-time systems with delays in state and delays in control, Bulletin of the Polish Academy of Sciences: Technical Sciences 53(3): 293-298.

[7] Kaczorek T. (2006a). A realization problem for positive continuous-time linear systems with reduced numbers of delays, International Journal of Applied Mathematics and Computer Science 16(3): 325-331.

[8] Kaczorek T. (2006b). Computation of realizations of discrete-time cone systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 54(3): 347-350.

[9] Kaczorek T. (2006c). Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs, International Journal of Applied Mathematics and Computer Science 16(2): 169-174.

[10] Kaczorek T. (2008a). Realization problem for fractional continuous-time systems, Archives of Control Sciences 18(1): 43-58.

[11] Kaczorek T. (2008b). Realization problem for positive 2D hybrid systems, COMPEL 27(3): 613-623.

[12] Kaczorek T. (2008c). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223-228, DOI: 10.2478/v10006-008-0020-0.

[13] Kaczorek T. (2009a). Fractional positive linear systems, Kybernetes: The International Journal of Systems Cybernetics 38(7/8): 1059-1078.

[14] Kaczorek T. (2009b). Polynomial and Rational Matrices, Springer-Verlag, London.

[15] Kaczorek T. (2011a). Computation of positive stable realizations for linear continuous-time systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 59(3): 273-281 and Proceedings of the 20th European Conference on Circuit Theory and Design, Linköping, Sweden.

[16] Kaczorek T. (2011b). Positive stable realizations of fractional continuous-time linear systems, International Journal of Applied Mathematics and Computer Science 21(4): 697-702, DOI: 10.2478/v10006-011-0055-5.

[17] Kaczorek T. (2011c). Positive stable realizations with system Metzler matrices, Archives of Control Sciences 21(2): 167-188 and Proceedings of the MMAR'2011 Conference, Międzyzdroje, Poland, (on CD-ROM).

[18] Kaczorek T. (2011d). Selected Problems in Fractional Systems Theory, Springer-Verlag, London.

[19] Kaczorek T. (2012a). Existence and determination of the set of Metzler matrices for given stable polynomials, International Journal of Applied Mathematics and Computer Science 22(2): 389-399, DOI: 10.2478/v10006-012-0029-2.

[20] Kaczorek T. (2012b). Positive stable realizations of discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(3): 605-616.

[21] Shaker U. and Dixon M. (1977). Generalized minimal realization of transfer-function matrices, International Journal of Control 25(5): 785-803.