Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_4_a17, author = {Puszy\'nski, K. and Jaksik, R. and \'Swierniak, A.}, title = {Regulation of p53 by {siRNA} in radiation treated cells: {Simulation} studies}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {1011--1018}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a17/} }
TY - JOUR AU - Puszyński, K. AU - Jaksik, R. AU - Świerniak, A. TI - Regulation of p53 by siRNA in radiation treated cells: Simulation studies JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 1011 EP - 1018 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a17/ LA - en ID - IJAMCS_2012_22_4_a17 ER -
%0 Journal Article %A Puszyński, K. %A Jaksik, R. %A Świerniak, A. %T Regulation of p53 by siRNA in radiation treated cells: Simulation studies %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 1011-1018 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a17/ %G en %F IJAMCS_2012_22_4_a17
Puszyński, K.; Jaksik, R.; Świerniak, A. Regulation of p53 by siRNA in radiation treated cells: Simulation studies. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 4, pp. 1011-1018. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a17/
[1] Davis, M. E. (2009). The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic, Molecular Pharmacology 6(3): 659-668.
[2] Dorsett, Y. and Tuschl, T. (2009). siRNAs: Applications in functional genomics and potential as therapeutics, Nature Reviews Drug Discovery 3(4): 318-329.
[3] Fire, A., Xu, S., Montgomery, M., Kostas, S., Driver, S. and Mello, C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature 391(6669): 806-811.
[4] Fujarewicz, K. (2010). Planning identification experiments for cell signaling pathways: An NFkB case study, International Journal of Applied Mathematics and Computer Science 20(4): 773-780, DOI: 10.2478/v10006-010-0059-6.
[5] García, J., Silva, J., Peña, C., Garcia, V., Rodríguez, R., Cruz, M.A., Cantos, B., Provencio, M., España, P. and Bonilla, F. (2004). Promoter methylation of the PTEN gene is a common molecular change in breast cancer, Genes Chromosomes and Cancer 41(2): 117-124.
[6] Gatter, K., Brown, G., Trowbridge, I., Woolston, R. and Mason, D. (1983). Transferring receptors in human tissues: Their distribution and possible clinical relevance, Journal of Clinical Pathology 36(5): 539-545.
[7] Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G. and Alon, U. (2006). Oscillations and variability in the p53 system, Molecular Systems Biology 2: 2006.0033.
[8] Giono, L. and Manfredi, J. (2007). Mdm2 is required for inhibition of cdk2 activity by p21, thereby contributing to p53-dependent cell cycle arrest, Molecular Cell Biology 27(11): 4166-4178.
[9] Goldstein, I., Marcel, V., Olivier, M., Oren, M., Rotter, V. and Hainaut, P. (2011). Understanding wild-type and mutant p53 activities in human cancer: New landmarks on the way to targeted therapies, Cancer Gene Therapy 18(1): 2-11.
[10] Hannon, G. and Rossi, J. (2004). Unlocking the potential of the human genome with RNA interference, Nature 431(7006): 371-378.
[11] Harris, S. and Levine, A. (2005). The p53 pathway: Positive and negative feedback loops, Oncogene 24(17): 2899-2908.
[12] Haupt, Y., Maya, R., Kazaz, A. and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53, Nature 387(6630): 296-299.
[13] Hrstka, R., Coates, P. and Vojtesek, B. (2009). Polymorphisms in p53 and the p53 pathway: Roles in cancer susceptibility and response to treatment, Journal of Cellular and Molecular Medicine 13(3): 440-453.
[14] Kim, B., Tang, Q., Biswas, P., Xu, J., Schiffelers, R., Xie, F., Ansari, A., Scaria, P., Woodle, M., Lu, P. and Rouse, B. (2004). Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: Therapeutic strategy for herpetic stromal keratitis, The American Journal of Pathology 165(6): 2177-2185.
[15] Kohn, K. and Pommier, Y. (2005). Molecular interaction map of the p53 and mdm2 logic elements, which control the off-on switch of p53 in response to DNA damage, Biochemical and Biophysical Research Communications 331(3): 816-827.
[16] Krawczyk, B., Rudnicka, K. and Fabianowska-Majewska, K. (2007). The effects of nucleoside analogues on promoter methylation of selected tumor suppressor genes in mcf-7 and mda-mb-231 breast cancer cell lines, Nucleosides, Nucleotides and Nucleic Acids 26(8-9): 1043-1046.
[17] Levine, A., Hu, W. and Feng, Z. (2006). The p53 pathway: What questions remain to be explored?, Cell Death and Differentiation 13(6): 1027-1036.
[18] Li, L. and Ross, A. (2007). Why is PTEN an important tumor suppressor?, Journal of Cellular Biochemistry 102(6): 1368-1374.
[19] Li, W. and Cha, L. (2007). Predicting siRNA efficiency, Cellular and Molecular Life Sciences 64(14): 1785-11792.
[20] Makinen, P., Koponen, J., Karkkainen, A., Malm, T., Pulkkinen, K., Koistinaho, J., Turunen, M. and Yla-Herttuala, S. (2006). Stable RNA interference: Comparison of u6 and h1 promoters in endothelial cells and in mouse brain, The Journal of Gene Medicine 8(4): 433-441.
[21] Overhoff, M.,Wnsche, W. and Sczakiel, G. (2004). Quantitative detection of siRNA and single-stranded oligonucleotides: Relationship between uptake and biological activity of siRNA, Nucleic Acids Research 32(21): e170.
[22] Puszynski, K., Hat, B. and Lipniacki, T. (2008). Oscillations and bistability in the stochastic model of p53 regulation, Journal of Theoretical Biology 254(2): 452-465.
[23] Ryther, R., Flynt, A., Phillips, J. and Patton, J. (2005). siRNA therapeutics: Big potential from small RNAs, Gene Therapy 12(1): 5-11.
[24] Shim, M. and Kwon, Y. (2010). Efficient and targeted delivery of siRNA in vivo, FEBS Journal 277(23): 4814-4827.
[25] Świerniak, A., Ledzewicz, U. and Schättler, H. (2003). Optimal control for a class of compartmental models in cancer chemotherapy, International Journal of Applied Mathematics and Computer Since 13(3): 357-368.
[26] Veldhoen, S., Laufer, S. D., Trampe, A. and Restle, T. (2006). Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: Quantitative analysis of uptake and biological effect, Nucleic Acids Research 34(22): 6561-6573.