Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_4_a13, author = {Karpowicz, M. P.}, title = {Nash equilibrium design and price-based coordination in hierarchical systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {951--969}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a13/} }
TY - JOUR AU - Karpowicz, M. P. TI - Nash equilibrium design and price-based coordination in hierarchical systems JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 951 EP - 969 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a13/ LA - en ID - IJAMCS_2012_22_4_a13 ER -
%0 Journal Article %A Karpowicz, M. P. %T Nash equilibrium design and price-based coordination in hierarchical systems %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 951-969 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a13/ %G en %F IJAMCS_2012_22_4_a13
Karpowicz, M. P. Nash equilibrium design and price-based coordination in hierarchical systems. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 4, pp. 951-969. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a13/
[1] Alpcan, T. and Pavel, L. (2009). Nash equilibrium design and optimization, International Conference on Game Theory for Networks, GameNets' 09, Istanbul, Turkey, pp. 164-170.
[2] Alpcan, T., Pavel, L. and Stefanovic, N. (2010). An optimization and control theoretic approach to noncooperative game design, arXiv:1007.0144.
[3] Arrow, K. J. and Hurwicz, L. (1977). Studies in Resource Allocation Processes, Cambridge University Press, New York, NY.
[4] Basar, T. and Olsder, G. J. (1999). Dynamic Noncooperative Game Theory, SIAM Classics in Applied Mathematics, SIAM, Philadelphia, PA.
[5] Bertsekas, D. and Ozdaglar, A. (2002). Pseudonormality and a Lagrange multiplier theory for constrained optimization, Journal of Optimization Theory and Applications 114(2): 287-343.
[6] Chao, H. and Guo, X. (2002). Quality of Service Control in High-Speed Networks, John Wiley Sons, New York, NY.
[7] Clempner, J. B. and Poznyak, A. S. (2011). Convergence method, properties and computational complexity for Lyapunov games, International Journal of Applied Mathematics and Computer Science 21(2): 349-361, DOI: 10.2478/v10006-011-0026-x.
[8] Cramton, P. (1997). The FCC spectrum auctions: An early assessment, Journal of Economics and Management Strategy 6(3): 431-495.
[9] Fiacco, A. V. and McCormick, G. P. (1990). Nonlinear Programming: Sequential Unconstrained Minimization Techniques, SIAM Classics in Applied Mathematics, SIAM, Philadelphia, PA.
[10] Findeisen,W. (1968). Parametric optimization by primal method in multilevel systems, IEEE Transactions on Systems Science and Cybernetics 4(2): 155-164.
[11] Findeisen, W., Bailey, F. N., Brdyś, M., Malinowski, K., Tatjewski, P. and Woźniak, A. (1980). Control and Coordination in Hierarchical Systems, John Wiley Sons, New York, NY.
[12] Findeisen, W., Brdyś, M., Malinowski, K., Tatjewski, P. and Woźniak, A. (1978). On-line hierarchical control for steady-state systems, IEEE Transactions on Automatic Control 23(2): 189-209.
[13] Fudenberg, D. and Tirole, J. (1991). Game Theory, The MIT Press, Cambridge, MA.
[14] Green, J. R. and Laffont, J.-J. (1979). Incentives in Public Decision-making, North-Holland Publishing Company, Amsterdam.
[15] Grossman, S. J. and Stiglitz, J. (1980). On the impossibility of informationally efficient markets, American Economic Review 70(3): 393-408.
[16] Groves, T., Radner, R. and Reiter, S. (Eds.) (1987). Information, Incentives, and Economic Mechanisms: Essays in Honor of Leonid Hurwicz, University of Minnesota Press, Mineapolis, MN.
[17] Hurwicz, L. (1977). On Informationally Decentralized Systems, Studies in Resource Allocation Processes, Cambridge University Press, New York, NY, Chapter 4, pp. 425-459.
[18] Hurwicz, L. (1979). On allocations attainable through Nash equilibria, Journal of Economic Theory 21(1): 140-165.
[19] Hurwicz, L., Maskin, E. and Postlewaite, A. (1995). Feasible implementation of social choice correspondences by Nash equilibria, in J.O. Ledyard (Ed.), Essays in Honor of Stanley Reiter, Kluwer Academic Publishers, Norwell, MA, pp. 367-433.
[20] Hurwicz, L. and Walker, M. (1990). On the generic nonoptimality of dominant-strategy allocation mechanisms: A general theorem that includes pure exchange economies, Econometrica 58(3): 683-704.
[21] Jin, C., Wei, D., Low, S., Bunn, J., Choe, H., Doylle, J., Newman, H., Ravot, S., Singh, S. and Paganini, F. (2005). FAST TCP: From theory to experiments, IEEE Network 19(1): 4-11.
[22] Jofré, A., Rockafellar, R. and Wets, R. (2007). Variational inequalities and economic equilibrium, Mathematics of Operations Research 32(1): 32.
[23] Johari, R. (2004). Efficiency Loss in Market Mechanisms for Resource Allocation, Ph.D. thesis, MIT, Cambridge, MA.
[24] Johari, R., Mannor, S. and Tsitsiklis, J. N. (2005). Efficiency loss in a network resource allocation game: The case of elastic supply, IEEE Transactions on Automatic Control 50(11): 1712-1724.
[25] Johari, R. and Tsitsiklis, J. N. (2004). Efficiency loss in a network resource allocation game, Mathematics of Operation Research 29(3): 407-435.
[26] Johari, R. and Tsitsiklis, J. N. (2009). Efficiency of scalar-parameterized mechanisms, Operations Research 57(4): 823-839.
[27] Kakutani, S. (1941). A generalization of Brouwer's fixed point theorem, Duke Mathematical Journal 8(3): 457-459.
[28] Karpowicz, M. (2010). Coordination in Hierarchical Systems with Rational Agents, Ph.D. thesis, Warsaw University of Technology, Warsaw.
[29] Karpowicz, M. (2011). Designing auctions: A historical perspective, Journal of Telecommunications and Information Technology 3: 114-122.
[30] Kelly, F. P. (1997). Charging and rate control for elastic traffic, European Transactions on Telecommunications 8(1): 33-37.
[31] Kelly, F. P., Maulloo, A. K. and Tan, D. K. (1998). Rate control for communication networks: Shadow prices, proportional fairness, and stability, Journal of the Operational Research Society 49(3): 237-252.
[32] Kołodziej, J. and Xhafa, F. (2011). Modern approaches to modeling user requirements on resource and task allocation in hierarchical computational grids, International Journal of Applied Mathematics and Computer Science 21(2): 243-257, DOI: 10.2478/v10006-011-0018-x.
[33] Krishna, V. (2002). Auction Theory, Academic Press, San Diego, CA.
[34] La, R. J. and Anantharam, V. (2000). Charge-sensitive TCP and rate control in the Internet, IEEE INFOCOM 2000, Tel-Aviv, Israel, pp. 1166-1175.
[35] Laffont, J.-J. and Martimort, D. (2002). The Theory of Incentives, Princeton University Press, Princeton, NJ.
[36] Low, S. H. (2003). A duality model of TCP and queue management algorithms, IEEE/ACM Transactions on Networking 11(4): 525-536.
[37] Low, S. H. and Lapsley, D. E. (1999). Optimization flow control, I: Basic algorithm and convergence, IEEE/ACM Transactions on Networking 7(6): 861-874.
[38] Low, S., Paganini, F., Wang, J. and Doyle, J. (2003). Linear stability of TCP/RED and a scalable control, Computer Networks 43(5): 633-647.
[39] Low, S., Peterson, L. and Wang, L. (2002). Understanding TCP Vegas: A duality model, Journal of the ACM (JACM) 49(2): 207-235.
[40] Lubacz, J. (Ed.) (2011). Auction Mechanisms in Telecommunications, WKŁ,Warsaw, (in Polish).
[41] Maheswaran, R. and Basar, T. (2004). Social welfare of selfish agents: Motivating efficiency for divisible resources, Proceedings of the 43rd IEEE Conference on Decision and Control, The Bahamas.
[42] Malinowski, K. (2002). Optimization network flow control and price coordination with feedback: Proposal of a new distributed algorithm, Computer Communications 25(11-12): 1028-1036.
[43] Mas-Colell, A., Whinston, M. D. and Green, J. R. (1995). Microeconomic Theory, Oxford University Press, New York, NY.
[44] Maskin, E. (1999). Nash equilibrium and welfare optimality, The Review of Economic Studies 66(1): 23-38.
[45] Milgrom, P. (2004). Putting Auction Theory to Work, Cambridge University Press, New York, NY.
[46] Milgrom, P. and Weber, R. (1982). A theory of auctions and competitive bidding, Econometrica 50(5): 1089-1122.
[47] Mo, J. and Walrand, J. (2000). Fair end-to-end window-based congestion control, IEEE/ACM Transactions on Networking 8(5): 556-567.
[48] Myerson, R. B. (1981). Optimal auction design, Mathematics of Operations Research 6(1): 58-73.
[49] Myerson, R. B. (1991). Game Theory: Analysis of Conflict, Harvard University Press, Cambridge, MA.
[50] Nash, J. (1950). Equilibrium points in n-person games, Proceedings of National Academy of Science 36(1): 48-49.
[51] Nash, J. (1951). Non-cooperative games, Annals of Mathematics 54(2): 289-295.
[52] Negishi, T. (1960). Welfare economics and existence of an equilibrium for a competitive economy, Metroeconomica 12(2-3): 92-97.
[53] Ogryczak, W., Pióro, M. and Tomaszewski, A. (2005). Telecommunications network design and max-min optimization problem, Journal of Telecommunications and Information Technology 3: 43-56.
[54] Ogryczak, W., Wierzbicki, A. and Milewski, M. (2008). A multi-criteria approach to fair and efficient bandwidth allocation, Omega 36(3): 451-463.
[55] Pióro, M. and Medhi, D. (2004). Routing, Flow, and Capacity Design in Communication and Computer Networks, Morgan Kaufmann, San Francisco, CA.
[56] Rockafellar, R. T. and Wets, R. J.-B. (2004). Variational Analysis, A Series of Comprehensive Studies in Mathematics, Vol. 317, Springer-Verlag, Berlin/Heidelberg.
[57] Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave n-person games, Econometrica 33(3): 520-534.
[58] Rotschild, M. and Stiglitz, J. (1976). Equilibrium in competitive insurance markets: An essay on the economics of imperfect information, Quarterly Journal of Economics 90(4): 630-649.
[59] Sen, A. (1969). Quasi-transitivity, rational choice and collective decisions, Review of Economic Studies 36(107): 381-93.
[60] Sen, A. (1970). Interpersonal aggregation and partial comparability, Econometrica 38(3): 393-409.
[61] Sen, A. (1977). On weights and measures: Informational constraints in social welfare, Econometrica 45(7): 1539-1572.
[62] Srikant, R. (2003). The Mathematics of Internet Congestion Control, Birkhäuser, Boston, MA.
[63] Stallings, W. (1998). High-Speed Networks, Prentice Hall, Upper Saddle River, NJ.
[64] Stiglitz, J. (2000). The contributions of the economics of information to twentieth century economics, The Quarterly Journal of Economics 115(4): 1441-1478.
[65] Uzawa, H. (1960). Market mechanisms and mathematical programming, Econometrica 28(4): 872-881.
[66] Vickrey, W. (1961). Counterspeculation, auctions and competitive sealed tenders, Journal of Finance 16(1): 8-37.
[67] Wei, D. X., Jin, C., Low, S. H. and Hegde, S. (2006). FAST TCP: Motivation, architecture, algorithms, performance, IEEE/ACM Transactions on Networking 16(6): 1246-1259.
[68] Wierzbicki, A. P., Makowski, M. and Wessels, J. (2001). Model-Based Decision Support Methodology with Environmental Applications, Kluwer Academic Publishers, Dordrecht.
[69] Yang, S. and Hajek, B. (2005). Revenue and stability of a mechanism for efficient allocation of a divisible good, Mimeo, University of Illinois, Urbana-Champaign, IL.
[70] Yang, S. and Hajek, B. (2007). VCG-Kelly mechanisms for allocation of divisible goods: Adapting VCG mechanisms to one-dimensional signals, IEEE Journal on Selected Areas in Communications 25(6): 1237-1243.