Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_4_a0, author = {Li, C. and Chiang, T. W.}, title = {Intelligent financial time series forecasting: {A} complex neuro-fuzzy approach with multi-swarm intelligence}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {787--800}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a0/} }
TY - JOUR AU - Li, C. AU - Chiang, T. W. TI - Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 787 EP - 800 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a0/ LA - en ID - IJAMCS_2012_22_4_a0 ER -
%0 Journal Article %A Li, C. %A Chiang, T. W. %T Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 787-800 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a0/ %G en %F IJAMCS_2012_22_4_a0
Li, C.; Chiang, T. W. Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 4, pp. 787-800. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_4_a0/
[1] Albus, J. S. (1975). Data storage in the cerebellar model articulation controller (CMAC), Journal of Dynamic Systems, Measurement and Control 97(2): 228-233.
[2] Boyacioglu, M. A. and Avci, D. (2010). An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: The case of the Istanbul stock exchange, Expert Systems with Applications 37(12): 7908-7912.
[3] Brdyś, M. A., Borowa, A., Idźkowiak, P. and Brdyś, M. T. (2009). Adaptive prediction of stock exchange indices by state space wavelet networks, International Journal of Applied Mathematics and Computer Science 19(2): 337-348, DOI: 10.2478/v10006-009-0029-z.
[4] Buckley, J. J. (1989). Fuzzy complex numbers, Fuzzy Sets and Systems 33(3): 333-345.
[5] Castro, J. L. (1995). Fuzzy logic controllers are universal approximators, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 25(4): 629-635.
[6] Chen, Z., Aghakhani, S., Man, J. and Dick, S. (2011). ANCFIS: A neurofuzzy architecture employing complex fuzzy sets, IEEE Transactions on Fuzzy Systems 19(2): 305-322.
[7] Deng, X. and Wang, X. (2009). Incremental learning of dynamic fuzzy neural networks for accurate system modeling, Fuzzy Sets and Systems 160(7): 972-987.
[8] Dick, S. (2005). Toward complex fuzzy logic, IEEE Transactions on Fuzzy Systems 13(3): 405-414.
[9] Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory, Proceedings of the 6th International Symposium on Micro Machine and Human Science, MHS 1995, Nagoya, Japan, pp. 39-43.
[10] Gao, Y. and Er, M. J. (2005). Narmax time series model prediction: Feedforward and recurrent fuzzy neural network approaches, Fuzzy Sets and Systems 150(2): 331-350.
[11] Graves, D. and Pedrycz, W. (2009). Fuzzy prediction architecture using recurrent neural networks, Neurocomputing 72(7-9): 1668-1678.
[12] Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward networks are universal approximators, Neural Networks 2(5): 359-366.
[13] Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics 23(3): 665-685.
[14] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942-1948.
[15] Khashei, M. and Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting, Applied Soft Computing 11(2): 2664-2675.
[16] Kim, J. and Kasabov, N. (1999). HYFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems, Neural Networks 12(9): 1301-1319.
[17] Li, C. and Cheng, H.-H. (2011). Intelligent forecasting of S 500 time series-A self-organizing fuzzy approach, in N. T. Nguyen, C.-G. Kim and A. Janiak (Eds.), Intelligent Information and Database Systems, Lecture Notes in Artificial Intelligence, Vol. 6592, Springer-Verlag, Berlin/Heidelberg, pp. 411-420.
[18] Li, C. and Chiang, T.-W. (2011a). Complex fuzzy computing to time series prediction-A multi-swarm PSO learning approach, in N. T. Nguyen, C.-G. Kim and A. Janiak (Eds.) Intelligent Information and Database Systems, Lecture Notes in Artificial Intelligence, Vol. 6592, Springer-Verlag, Berlin/Heidelberg, pp. 242-251.
[19] Li, C. and Chiang, T.-W. (2011b). Complex fuzzy model with PSO-RLSE hybrid learning approach to function approximation, International Journal of Intelligent Information and Database Systems 5(4): 409-430.
[20] Li, C. and Chiang, T.-W. (2011c). Function approximation with complex neuro-fuzzy system using complex fuzzy sets-A new approach, New Generation Computing 29(3): 261-276.
[21] Li, C., Chiang, T.-W., J.-W., H. and Wu, T. (2010). Complex neuro-fuzzy intelligent approach to function approximation, 3rd International Workshop on Advanced Computational Intelligence, IWACI 2010, Suzhou, China, pp. 151-156.
[22] Li, C. and Lee, C.-Y. (2003). Self-organizing neuro-fuzzy system for control of unknown plants, IEEE Transactions on Fuzzy Systems 11(1): 135-150.
[23] Li, C., Lee, C.-Y. and Cheng, K.-H. (2004). Pseudoerror-based self-organizing neuro-fuzzy system, IEEE Transactions on Fuzzy Systems 12(6): 812-819.
[24] Li, C. and Priemer, R. (1997). Self-learning general purpose PID controller, Journal of the Franklin Institute 334(2): 167-189.
[25] Li, C. and Priemer, R. (1999). Fuzzy control of unknown multiple-input-multiple-output plants, Fuzzy Sets and Systems 104(2): 245-267.
[26] Lu, C.-J., Lee, T.-S. and Chiu, C.-C. (2009). Financial time series forecasting using independent component analysis and support vector regression, Decision Support Systems 47(2): 115-125.
[27] Man, J. Y., Chen, Z. and Dick, S. (2007). Towards inductive learning of complex fuzzy inference systems, Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2007, San Diego, CA, USA, pp. 415-420.
[28] Mansour, M. M., Mekhamer, S. F. and El-Kharbawe, N.-S. (2007). A modified particle swarm optimizer for the coordination of directional overcurrent relays, IEEE Transactions on Power Delivery 22(3): 1400-1410.
[29] Moody, J. and Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units, Neural Computation 1(2): 281-294.
[30] Moses, D., Degani, O., Teodorescu, H. N., Friedman, M. and Kandel, A. (1999). Linguistic coordinate transformations for complex fuzzy sets, IEEE International Fuzzy Systems Conference Proceedings, FUZZ-IEEE 1999, Seoul, Korea, pp. 1340-1345.
[31] Mousavi, S. J., Ponnambalam, K. and Karray, F. (2007). Inferring operating rules for reservoir operations using fuzzy regression and ANFIS, Fuzzy Sets and Systems 158(10): 1064-1082.
[32] Niu, B., Zhu, Y., He, X. and Wu, H. (2007). MCPSO: A multi-swarm cooperative particle swarm optimizer, Applied Mathematics and Computation 185(2): 1050-1062.
[33] Paul, S. and Kumar, S. (2002). Subsethood-product fuzzy neural inference system (SUPFUNIS), IEEE Transactions on Neural Networks 13(3): 578-599.
[34] Ramot, D., Friedman, M., Langholz, G. and Kandel, A. (2003). Complex fuzzy logic, IEEE Transactions on Fuzzy Systems 11(4): 450-461.
[35] Ramot, D., Milo, R., Friedman, M. and Kandel, A. (2002). Complex fuzzy sets, IEEE Transactions on Fuzzy Systems 10(2): 171-186.
[36] Rojas, I., Valenzuela, O., Rojas, F., Guillen, A., Herrera, L. J., Pomares, H., Marquez, L. and Pasadas, M. (2008). Soft-computing techniques and ARMA model for time series prediction, Neurocomputing 71(4-6): 519-537.
[37] Simiński, K. (2010). Rule weights in a neuro-fuzzy system with a hierarchical domain partition, International Journal of Applied Mathematics and Computer Science 20(2): 337-347, DOI: 10.2478/v10006-010-0025-3.
[38] Smetek, M. and Trawinski, B. (2011). Selection of heterogeneous fuzzy model ensembles using self-adaptive genetic algorithms, New Generation Computing 29(3): 309-327.
[39] Tung, W. L. and Quek, C. (2011). Financial volatility trading using a self-organising neural-fuzzy semantic network and option straddle-based approach, Expert Systems with Applications 38(5): 4668-4688.
[40] Vo, N., Quang, T., Dinh, T. and Dinh, T. (2011). Robust visual tracking using randomized forest and online appearance model, in N. T. Nguyen, C.-G. Kim and A. Janiak (Eds.), Intelligent Information and Database Systems, Lecture Notes in Artificial Intelligence, Vol. 6592, Springer-Verlag, Berlin/Heidelberg pp. 212-221.
[41] Yahoo Finance for Hang Seng Index (2011). Website: http://finance.yahoo.com/q?s=ˆHSI.
[42] Yahoo Finance for Nikkei 225 Index (2011). Website, http://finance.yahoo.com/q?s=ˆN225.
[43] Yahoo Finance for Taiwan Stock Exchange Capitalization Weighted Stock Index (2011). Website, http://finance.yahoo.com/q?s=ˆTWII.
[44] Yuhui, S. and Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization, Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, pp. 101-106.
[45] Zhang, G., Dillon, T. S., Cai, K.-Y., Ma, J. and Lu, J. (2009). Operation properties and \delta-equalities of complex fuzzy sets, International Journal of Approximate Reasoning 50(8): 1227-1249.