Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_3_a2, author = {Ostalczyk, P.}, title = {Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {533--538}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a2/} }
TY - JOUR AU - Ostalczyk, P. TI - Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 533 EP - 538 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a2/ LA - en ID - IJAMCS_2012_22_3_a2 ER -
%0 Journal Article %A Ostalczyk, P. %T Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 533-538 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a2/ %G en %F IJAMCS_2012_22_3_a2
Ostalczyk, P. Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 3, pp. 533-538. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a2/
[1] Dzieliński, A. and Sierociuk, D. (2008). Stability of discrete fractional order state-space systems, Journal of Vibration and Control 14(9/10): 1543-1556.
[2] Guermah, S., Djennoune, S. and Bettayeb, M. (2010). A new approach for stability analysis of linear discrete-time fractional-order systems, in D. Baleanu, Z. Güvenç and J. T. Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus Applications, Springer, Dodrecht, pp. 151-162.
[3] Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.
[4] Kailath, S. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs, NJ.
[5] Matignon, D. (1996). Stability results for fractional differential eqations with applications to control processing, Computational Engineering in Systems and Application Multiconference, Lille, France, pp. 963-968.
[6] Miller, K. and Ross, B. (1993). An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.
[7] Ogata, K. (1987). Discrete Control Systems, Prentice-Hall, Englewood Cliffs, NJ.
[8] Oldham, K. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.
[9] Ostalczyk, P. (2008). Epitome of Fractional Calculus: Theory and Its Applications in Automatics, Technical University of Łódź Press, Łódź, (in Polish).
[10] Oustaloup, A. (1991). La commande CRONE, Éditions Hermès, Paris.
[11] Oustaloup, A. (1995). La derivation non entière: thèorie, syntheses et applications, Éditions Hermès, Paris.
[12] Oustaloup, A. (1999). La commande crone: du scalaire au multivariable, Éditions Hermès, Paris.
[13] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.
[14] Samko, A. Kilbas, A. and Marichev, O. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London.
[15] Valério, D. and Costa, S. (2006). Tuning of fractional PID controllers with Ziegler-Nichols-type rules, Signal Processing 86(10): 2771-2784.