Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_3_a19, author = {Formanowicz, P. and Tana\'s, K.}, title = {The {Fan-Raspaud} conjecture: {A} randomized algorithmic approach and application to the pair assignment problem in cubic networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {765--778}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a19/} }
TY - JOUR AU - Formanowicz, P. AU - Tanaś, K. TI - The Fan-Raspaud conjecture: A randomized algorithmic approach and application to the pair assignment problem in cubic networks JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 765 EP - 778 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a19/ LA - en ID - IJAMCS_2012_22_3_a19 ER -
%0 Journal Article %A Formanowicz, P. %A Tanaś, K. %T The Fan-Raspaud conjecture: A randomized algorithmic approach and application to the pair assignment problem in cubic networks %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 765-778 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a19/ %G en %F IJAMCS_2012_22_3_a19
Formanowicz, P.; Tanaś, K. The Fan-Raspaud conjecture: A randomized algorithmic approach and application to the pair assignment problem in cubic networks. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 3, pp. 765-778. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a19/
[1] Celmins, U. A. and Swart, E. (1979). The constructions of snarks, Research Report CORR, No. 18, Department of Combinatorics and Optimization, University of Waterloo, Waterloo.
[2] Fan, G. and Raspaud, A. (1994). Fulkerson's conjecture and circuit covers, Journal of Combinatorial Theory, Series B 61(1): 133-138.
[3] Fouquet, J.-L. and Vanherpe, J.-M. (2008). On Fan-Raspaud conjecture, CoRR-Computing Research Repository, abs/0809.4821.
[4] Goldberg, M. K. (1981). Construction of class 2 graphs with maximum vertex degree 3, Journal of Combinatorial Theory, Series B 31(3): 282-291.
[5] Holyer, I. (1981). The NP-completeness of edge coloring, SIAM Journal on Computing 10(4): 718-720.
[6] Isaacs, R. (1975). Infinite families of nontrivial trivalent graphs which are not Tait colorable, American Mathematical Monthly 82(3): 221-239.
[7] Kochol, M. (1996). Snarks without small cycles, Journal of Combinatorial Theory, Series B 67(1): 34-47.
[8] Greenlaw, R. P. (1995). Cubic graphs, ACM Computing Surveys 27(4): 471-495.
[9] Szekeres, G. (1973). Polyhedral decompositions of cubic graphs, Bulletin of the Australian Mathematical Society 8(3): 367-387.
[10] Vizing, V. (1964). On an estimate of the chromatic class of a p-graph, Diskretnyj Analiz 3: 25-30.
[11] Watkins, J. and Wilson, R. (1988). A survey of snarks, in Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Wiley Interscience, New York, NY/Kalamazoo, MI.
[12] Watkins, J. (1989). Snarks, Annals of the New York Academy of Sciences 576: 606-622.