Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_3_a13, author = {Tan, Y. and Dong, R. and Chen, H. and He, H.}, title = {Neural network based identification of hysteresis in human meridian systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {685--694}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a13/} }
TY - JOUR AU - Tan, Y. AU - Dong, R. AU - Chen, H. AU - He, H. TI - Neural network based identification of hysteresis in human meridian systems JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 685 EP - 694 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a13/ LA - en ID - IJAMCS_2012_22_3_a13 ER -
%0 Journal Article %A Tan, Y. %A Dong, R. %A Chen, H. %A He, H. %T Neural network based identification of hysteresis in human meridian systems %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 685-694 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a13/ %G en %F IJAMCS_2012_22_3_a13
Tan, Y.; Dong, R.; Chen, H.; He, H. Neural network based identification of hysteresis in human meridian systems. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 3, pp. 685-694. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a13/
[1] Ahn, C., Colbert, A. P., Anderson, B. J., Martinsen, O. G., Hammerschlag, R., Cina, S., Wayne, P.M and Langevin, H. M. (2008). Electrical properties of acupuncture points and meridians: A systematic review, Bioelectromagnetics 29(4): 245-256.
[2] Dong, R. and Tan, Y. (2009). Modeling hysteresis in piezoceramic actuators using modified Prandtl-Ishlinskii model, Physica B 404(8-11): 1336-1342.
[3] Ge, P. and Jouaneh, M. (1995). Modeling hysteresis in piezoceramic actuators, Precision Engineering 17(3): 211-221.
[4] Huang, G. Zhu, Q. and Siew, C. (2006). Extreme learning machine: Theory and application, Neurocomputing 70: 489-501.
[5] Huang, G. and Chen, L. (2007). Convex incremental extreme learning machine, Neurocomputing 70(16-18): 3056-3062.
[6] Hu, H. and Mrad, R. (2003). On the classical Preisach model for hysteresis in piezoceramic actuators, Mechatronics 13(2): 85-94.
[7] Macki, J. W., Nistri and Zecca, P. (1993). Mathematical models for hysteresis, SIMAC Review 35(1): 94-123.
[8] Trentini, F. J., Thompson, B. and Erlichman, J. S. (2005). The antinociceptive effect of acupressure in rats, The American Journal of Chinese Medicine 33(1): 143-150.
[9] Tsuei, J. J. (1998). A modern interpretation of acupuncture and the meridian system, 2nd International Conference on Bioelectromagnetism, Melbourn, Australia, pp. 177-182.
[10] Wang, Z., Tan, Y. and Su, M. (2009). Modeling of meridian channels, Proceedings of the International Conference on Biomedical Electronics and Devices, Porto, Portugal, pp. 167-172.
[11] Yang, H. (1997). The research and application of the dynamic testing system for point skin resistance, Journal of Biomedical Engineering 16(1): 41-50.
[12] Yamamoto, Y. and Yamamoto, T. (1979). Dynamic system for the measurement of electrical skin impedance, Medical and Biological Engineering and Computing 17(1): 135-137.
[13] Zhao, X. and Tan, Y. (2006). Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator, Sensors and Actuators A 126(2): 306-311.
[14] Zhao, X. and Tan, Y. (2008). Modeling hysteresis and its inverse model using neural networks based on expanded input space method, IEEE Transactions on Control Systems Technology 16(3): 484-490.
[15] Zhang,W., Xu, R. and Zhu, Z. (1999). The influence of acupuncture on the impedance measured by four electrodes on meridians, Acupuncture Electro-Therapeutics Research 24(3-4): 181-188.