An approach to the analysis of observability and controllability in nonlinear systems via linear methods
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 3, pp. 507-522.

Voir la notice de l'article provenant de la source Library of Science

The paper is devoted to the problem of observability and controllability analysis in nonlinear dynamic systems. Both continuous- and discrete-time systems described by nonlinear differential or difference equations, respectively, are considered. A new approach is developed to solve this problem whose features include (i) consideration of systems with non-differentiable nonlinearities and (ii) the use of relatively simple linear methods which may be supported by existing programming systems, e.g.,Matlab. Sufficient conditions are given for nonlinear unobservability/uncontrollability analysis. To apply these conditions, one isolates the linear part of the system which is checked to be unobservable/uncontrollable and, if the answer is positive, it is examined whether or not existing nonlinear terms violate the unobservability/uncontrollability property.
Keywords: nonlinear dynamic systems, observability, controllability, linear systems, decomposition
Mots-clés : system dynamiczny nieliniowy, obserwowalność, sterowalność, system liniowy, dekompozycja
@article{IJAMCS_2012_22_3_a0,
     author = {Zhirabok, A. and Shumsky, A.},
     title = {An approach to the analysis of observability and controllability in nonlinear systems via linear methods},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {507--522},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a0/}
}
TY  - JOUR
AU  - Zhirabok, A.
AU  - Shumsky, A.
TI  - An approach to the analysis of observability and controllability in nonlinear systems via linear methods
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2012
SP  - 507
EP  - 522
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a0/
LA  - en
ID  - IJAMCS_2012_22_3_a0
ER  - 
%0 Journal Article
%A Zhirabok, A.
%A Shumsky, A.
%T An approach to the analysis of observability and controllability in nonlinear systems via linear methods
%J International Journal of Applied Mathematics and Computer Science
%D 2012
%P 507-522
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a0/
%G en
%F IJAMCS_2012_22_3_a0
Zhirabok, A.; Shumsky, A. An approach to the analysis of observability and controllability in nonlinear systems via linear methods. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 3, pp. 507-522. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a0/

[1] Albertini, F. and D'Alessandro, D. (2002). Observability and forwardbackward observability of discrete-time nonlinear systems, Mathematics of Control, Signal and Systems 15(3): 275-290.

[2] Guermah, S., Djennoune, S. and Bettayeb, M. (2008). Controllability and observability of linear discrete-time fractional-order systems, International Journal of Applied Mathematics and Computer Science 18(2): 213-222, DOI: 10.2478/v10006-008-0019-6.

[3] Herman, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control AC-22(5): 728-740.

[4] Isidori, A. (1989). Nonlinear Control Systems, Springer, London.

[5] Jakubczyk, B. and Sontag, E. (1990). Controllability of nonlinear discrete-time systems: A lie-algebraic approach, SIAM Journal Control and Optimization 28(1): 1-33.

[6] Jank, G. (2002). Controllability, observability and optimal control of continuous-time 2-D systems, International Journal of Applied Mathematic and Computer Science 12(2): 181-195.

[7] Kalman, R., Falb, P. and Arbib, M. (1969). Topics in Mathematical System Theory, Mc Graw-Hill Company, New York, NY.

[8] Kang, W. (2010). Analyzing control systems by using dynamic optimization, 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy.

[9] Kang, W. and Xu, L. (2009). A quantitative measure of observability and controllability, 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 6413-6418.

[10] Kawano, Y. and Ohtsuka, T. (2010). Global observability of discrete-time polynomial systems, 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy, pp. 646-651.

[11] Klamka, J. (1973). Uncontrollability and unobservability of composite systems, IEEE Transactions on Automatic Control AC-18(5): 539-540.

[12] Klamka, J. (1975). On the global controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control AC-20(1): 170-172.

[13] Klamka, J. (2002). Controllability of nonlinear discrete systems, American Control Conference, Anchorage, AK, USA, pp. 4670-4671.

[14] Koplon, R. and Sontag, E. (1993). Linear systems with sign-observations, SIAM Journal Control and Optimization 31(12): 1245-1266.

[15] Kotta, U. and Schlacher, K. (2008). Possible non-integrability of observable space for discrete-time nonlinear control systems, 17th IFAC World Congress, Seoul, Korea, pp. 9852-9856.

[16] Krener, A. and Ide, K. (2009). Measures of unobservability, 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 6401-6406.

[17] Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control Systems, A Division of John Sons, Inc., New York, NY.

[18] Mincheko, L. and Sirotko, S. (2002). Controllability of non-smooth discrete systems with delay, Optimization 51(1): 161-174.

[19] Murphey, T. and Burdick, J. (2002). Nonsmooth controllability theory and an example, 41st IEEE Conference on Decision and Control, Shanghai, China, pp. 370-376.

[20] Nijmeijer, H. (1982). Observability of autonomous discrete-time nonlinear systems: A geometric approach, International Journal of Control 36(6): 867-874.

[21] Sontag, E. (1979). On the observability of polynomial systems, I: Finite-time problems, SIAM Journal of Control and Optimization 17(1): 139-151.

[22] Sussmann, H. (1979). Single-input observability of continuous-time systems, Mathematical Systems Theory 12(3): 371-393.

[23] van der Schaft, A. J. (1982). Observability and controllability for smooth nonlinear systems, SIAM Journal of Control and Optimization 20(3): 338-354.

[24] Wohnam, M. (1985). Linear Multivariable Control, Springer-Verlag, New York, NY.

[25] Zhirabok, A. (1998a). Controllability of nonlinear discrete dynamic systems, NOLCOS'98 Symposium, Enschede, The Netherlands, pp. 281-283.

[26] Zhirabok, A. (1998b). Observability and controllability properties of nonlinear dynamic systems, International Journal of Computer and Systems Sciences 37(1): 1-4.

[27] Zhirabok, A. (2010). Analysis of observability and controllability of nonlinear dynamic systems by linear methods, International Journal of Computer and Systems Sciences 49(1): 8-15.

[28] Zhirabok, A. and Shumsky, A. (2008). The Algebraic Methods for Analysis of Nonlinear Dynamic Systems, Dalnauka, Vladivostok, (in Russian).

[29] Zhirabok, A. and Shumsky, A. (2010). Linear methods in observability and controllability of nonlinear systems, 8th IFAC Symposium on Nonlinear Systems, Bologna, Italy, pp. 308-313.

[30] Zhirabok, A. and Usoltsev, S. (2002). Fault diagnosis for nonlinear dynamic systems via linear methods, 15th IFAC World Congress, Barcelona, Spain.