Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_3_a0, author = {Zhirabok, A. and Shumsky, A.}, title = {An approach to the analysis of observability and controllability in nonlinear systems via linear methods}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {507--522}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a0/} }
TY - JOUR AU - Zhirabok, A. AU - Shumsky, A. TI - An approach to the analysis of observability and controllability in nonlinear systems via linear methods JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 507 EP - 522 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a0/ LA - en ID - IJAMCS_2012_22_3_a0 ER -
%0 Journal Article %A Zhirabok, A. %A Shumsky, A. %T An approach to the analysis of observability and controllability in nonlinear systems via linear methods %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 507-522 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a0/ %G en %F IJAMCS_2012_22_3_a0
Zhirabok, A.; Shumsky, A. An approach to the analysis of observability and controllability in nonlinear systems via linear methods. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 3, pp. 507-522. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_3_a0/
[1] Albertini, F. and D'Alessandro, D. (2002). Observability and forwardbackward observability of discrete-time nonlinear systems, Mathematics of Control, Signal and Systems 15(3): 275-290.
[2] Guermah, S., Djennoune, S. and Bettayeb, M. (2008). Controllability and observability of linear discrete-time fractional-order systems, International Journal of Applied Mathematics and Computer Science 18(2): 213-222, DOI: 10.2478/v10006-008-0019-6.
[3] Herman, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control AC-22(5): 728-740.
[4] Isidori, A. (1989). Nonlinear Control Systems, Springer, London.
[5] Jakubczyk, B. and Sontag, E. (1990). Controllability of nonlinear discrete-time systems: A lie-algebraic approach, SIAM Journal Control and Optimization 28(1): 1-33.
[6] Jank, G. (2002). Controllability, observability and optimal control of continuous-time 2-D systems, International Journal of Applied Mathematic and Computer Science 12(2): 181-195.
[7] Kalman, R., Falb, P. and Arbib, M. (1969). Topics in Mathematical System Theory, Mc Graw-Hill Company, New York, NY.
[8] Kang, W. (2010). Analyzing control systems by using dynamic optimization, 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy.
[9] Kang, W. and Xu, L. (2009). A quantitative measure of observability and controllability, 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 6413-6418.
[10] Kawano, Y. and Ohtsuka, T. (2010). Global observability of discrete-time polynomial systems, 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy, pp. 646-651.
[11] Klamka, J. (1973). Uncontrollability and unobservability of composite systems, IEEE Transactions on Automatic Control AC-18(5): 539-540.
[12] Klamka, J. (1975). On the global controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control AC-20(1): 170-172.
[13] Klamka, J. (2002). Controllability of nonlinear discrete systems, American Control Conference, Anchorage, AK, USA, pp. 4670-4671.
[14] Koplon, R. and Sontag, E. (1993). Linear systems with sign-observations, SIAM Journal Control and Optimization 31(12): 1245-1266.
[15] Kotta, U. and Schlacher, K. (2008). Possible non-integrability of observable space for discrete-time nonlinear control systems, 17th IFAC World Congress, Seoul, Korea, pp. 9852-9856.
[16] Krener, A. and Ide, K. (2009). Measures of unobservability, 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 6401-6406.
[17] Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control Systems, A Division of John Sons, Inc., New York, NY.
[18] Mincheko, L. and Sirotko, S. (2002). Controllability of non-smooth discrete systems with delay, Optimization 51(1): 161-174.
[19] Murphey, T. and Burdick, J. (2002). Nonsmooth controllability theory and an example, 41st IEEE Conference on Decision and Control, Shanghai, China, pp. 370-376.
[20] Nijmeijer, H. (1982). Observability of autonomous discrete-time nonlinear systems: A geometric approach, International Journal of Control 36(6): 867-874.
[21] Sontag, E. (1979). On the observability of polynomial systems, I: Finite-time problems, SIAM Journal of Control and Optimization 17(1): 139-151.
[22] Sussmann, H. (1979). Single-input observability of continuous-time systems, Mathematical Systems Theory 12(3): 371-393.
[23] van der Schaft, A. J. (1982). Observability and controllability for smooth nonlinear systems, SIAM Journal of Control and Optimization 20(3): 338-354.
[24] Wohnam, M. (1985). Linear Multivariable Control, Springer-Verlag, New York, NY.
[25] Zhirabok, A. (1998a). Controllability of nonlinear discrete dynamic systems, NOLCOS'98 Symposium, Enschede, The Netherlands, pp. 281-283.
[26] Zhirabok, A. (1998b). Observability and controllability properties of nonlinear dynamic systems, International Journal of Computer and Systems Sciences 37(1): 1-4.
[27] Zhirabok, A. (2010). Analysis of observability and controllability of nonlinear dynamic systems by linear methods, International Journal of Computer and Systems Sciences 49(1): 8-15.
[28] Zhirabok, A. and Shumsky, A. (2008). The Algebraic Methods for Analysis of Nonlinear Dynamic Systems, Dalnauka, Vladivostok, (in Russian).
[29] Zhirabok, A. and Shumsky, A. (2010). Linear methods in observability and controllability of nonlinear systems, 8th IFAC Symposium on Nonlinear Systems, Bologna, Italy, pp. 308-313.
[30] Zhirabok, A. and Usoltsev, S. (2002). Fault diagnosis for nonlinear dynamic systems via linear methods, 15th IFAC World Congress, Barcelona, Spain.