A Lyapunov functional for a system with a time-varying delay
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 327-337.

Voir la notice de l'article provenant de la source Library of Science

The paper presents a method to determine a Lyapunov functional for a linear time-invariant system with an interval time-varying delay. The functional is constructed for the system with a time-varying delay with a given time derivative, which is calculated on the system trajectory. The presented method gives analytical formulas for the coefficients of the Lyapunov functional.
Keywords: Lyapunov functional, time delay system, LTI system
Mots-clés : funkcjonał Lapunowa, system opóźniania
@article{IJAMCS_2012_22_2_a6,
     author = {Duda, J.},
     title = {A {Lyapunov} functional for a system with a time-varying delay},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {327--337},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a6/}
}
TY  - JOUR
AU  - Duda, J.
TI  - A Lyapunov functional for a system with a time-varying delay
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2012
SP  - 327
EP  - 337
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a6/
LA  - en
ID  - IJAMCS_2012_22_2_a6
ER  - 
%0 Journal Article
%A Duda, J.
%T A Lyapunov functional for a system with a time-varying delay
%J International Journal of Applied Mathematics and Computer Science
%D 2012
%P 327-337
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a6/
%G en
%F IJAMCS_2012_22_2_a6
Duda, J. A Lyapunov functional for a system with a time-varying delay. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 327-337. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a6/

[1] Duda, J. (1986). Parametric Optimization Problem for Systems with Time Delay, Ph. D. thesis, AGH University of Science and Technology, Cracow.

[2] Duda, J. (1988). Parametric optimization of neutral linear system with respect to the general quadratic performance index, Archiwum Automatyki i Telemechaniki 33(3): 448-456.

[3] Duda, J. (2010a). Lyapunov functional for a linear system with two delays, Control Cybernetics 39(3): 797-809.

[4] Duda, J. (2010b). Lyapunov functional for a linear system with two delays both retarded and neutral type, Archives of Control Sciences 20(LVI): 89-98.

[5] Fridman, E. (2001). New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems, Systems Control Letters 43(4): 309-319.

[6] Górecki, H., Fuksa, S., Grabowski, P., Korytowski, A. (1989). Analysis and Synthesis of Time Delay Systems, John Wiley Sons, Chichester/New York, NY/Brisbane/Toronto/Singapore.

[7] Gu, K. (1997). Discretized LMI set in the stability problem of linear time delay systems, International Journal of Control 68(4): 923-934.

[8] Gu, K. and Liu, Y. (2009). Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations, Automatica 45(3): 798-804.

[9] Han, Q. L. (2004). On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty, Automatica 40(6): 1087-1092.

[10] Han, Q. L. (2004). A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays, Automatica 40(10): 1791-1796.

[11] Han, Q. L. (2005). On stability of linear neutral systems with mixed time delays: A discretised Lyapunov functional approach, Automatica 41(7): 1209-1218.

[12] Han, Q. L. (2009). A discrete delay decomposition approach to stability of linear retarded and neutral systems, Automatica 45(2): 517-524.

[13] Infante, E. F. and Castelan, W. B. (1978). A Lyapunov functional for a matrix difference-differential equation, Journal of Differential Equations 29: 439-451.

[14] Ivanescu, D., Niculescu, S. I., Dugard, L., Dion, J. M. and Verriest, E.I. (2003). On delay-dependent stability for linear neutral systems, Automatica 39(2): 255-261.

[15] Kharitonov, V. L. (2005). Lyapunov functionals and Lyapunov matrices for neutral type time delay systems: A single delay case, International Journal of Control 78(11): 783-800.

[16] Kharitonov, V. L. (2008). Lyapunov matrices for a class of neutral type time delay systems, International Journal of Control 81(6): 883-893.

[17] Kharitonov, V. L. and Hinrichsen, D. (2004). Exponential estimates for time delay systems, Systems Control Letters 53(5): 395-405.

[18] Kharitonov, V. L. and Plischke, E. (2006). Lyapunov matrices for time-delay systems, Systems Control Letters 55(9): 697-706.

[19] Kharitonov, V. L., Zhabko, A. P. (2003). Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems, Automatica 39(1): 15-20.

[20] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.

[21] Repin, Yu. M. (1965). Quadratic Lyapunov functionals for systems with delay, Prikladnaja Matiematika i Miechanika 29: 564-566.

[22] Respondek, J. S. (2008). Approximate controllability of the n-th order infinite dimensional systems with controls delayed by the control devices, International Journal of Systems Science 39(8): 765-782.

[23] Richard, J. P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667-1694.

[24] Wang, D., Wang, W. and Shi, P. (2009). Exponential H-infinity filtering for switched linear systems with interval timevarying delay, International Journal of Robust and Nonlinear Control 19(5): 532-551.