Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_2_a6, author = {Duda, J.}, title = {A {Lyapunov} functional for a system with a time-varying delay}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {327--337}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a6/} }
TY - JOUR AU - Duda, J. TI - A Lyapunov functional for a system with a time-varying delay JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 327 EP - 337 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a6/ LA - en ID - IJAMCS_2012_22_2_a6 ER -
Duda, J. A Lyapunov functional for a system with a time-varying delay. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 327-337. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a6/
[1] Duda, J. (1986). Parametric Optimization Problem for Systems with Time Delay, Ph. D. thesis, AGH University of Science and Technology, Cracow.
[2] Duda, J. (1988). Parametric optimization of neutral linear system with respect to the general quadratic performance index, Archiwum Automatyki i Telemechaniki 33(3): 448-456.
[3] Duda, J. (2010a). Lyapunov functional for a linear system with two delays, Control Cybernetics 39(3): 797-809.
[4] Duda, J. (2010b). Lyapunov functional for a linear system with two delays both retarded and neutral type, Archives of Control Sciences 20(LVI): 89-98.
[5] Fridman, E. (2001). New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems, Systems Control Letters 43(4): 309-319.
[6] Górecki, H., Fuksa, S., Grabowski, P., Korytowski, A. (1989). Analysis and Synthesis of Time Delay Systems, John Wiley Sons, Chichester/New York, NY/Brisbane/Toronto/Singapore.
[7] Gu, K. (1997). Discretized LMI set in the stability problem of linear time delay systems, International Journal of Control 68(4): 923-934.
[8] Gu, K. and Liu, Y. (2009). Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations, Automatica 45(3): 798-804.
[9] Han, Q. L. (2004). On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty, Automatica 40(6): 1087-1092.
[10] Han, Q. L. (2004). A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays, Automatica 40(10): 1791-1796.
[11] Han, Q. L. (2005). On stability of linear neutral systems with mixed time delays: A discretised Lyapunov functional approach, Automatica 41(7): 1209-1218.
[12] Han, Q. L. (2009). A discrete delay decomposition approach to stability of linear retarded and neutral systems, Automatica 45(2): 517-524.
[13] Infante, E. F. and Castelan, W. B. (1978). A Lyapunov functional for a matrix difference-differential equation, Journal of Differential Equations 29: 439-451.
[14] Ivanescu, D., Niculescu, S. I., Dugard, L., Dion, J. M. and Verriest, E.I. (2003). On delay-dependent stability for linear neutral systems, Automatica 39(2): 255-261.
[15] Kharitonov, V. L. (2005). Lyapunov functionals and Lyapunov matrices for neutral type time delay systems: A single delay case, International Journal of Control 78(11): 783-800.
[16] Kharitonov, V. L. (2008). Lyapunov matrices for a class of neutral type time delay systems, International Journal of Control 81(6): 883-893.
[17] Kharitonov, V. L. and Hinrichsen, D. (2004). Exponential estimates for time delay systems, Systems Control Letters 53(5): 395-405.
[18] Kharitonov, V. L. and Plischke, E. (2006). Lyapunov matrices for time-delay systems, Systems Control Letters 55(9): 697-706.
[19] Kharitonov, V. L., Zhabko, A. P. (2003). Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems, Automatica 39(1): 15-20.
[20] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
[21] Repin, Yu. M. (1965). Quadratic Lyapunov functionals for systems with delay, Prikladnaja Matiematika i Miechanika 29: 564-566.
[22] Respondek, J. S. (2008). Approximate controllability of the n-th order infinite dimensional systems with controls delayed by the control devices, International Journal of Systems Science 39(8): 765-782.
[23] Richard, J. P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667-1694.
[24] Wang, D., Wang, W. and Shi, P. (2009). Exponential H-infinity filtering for switched linear systems with interval timevarying delay, International Journal of Robust and Nonlinear Control 19(5): 532-551.