Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_2_a5, author = {Rafaj{\l}owicz, E. and Stycze\'n, K. and Rafaj{\l}owicz, W.}, title = {A modified filter {SQP} method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {313--326}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a5/} }
TY - JOUR AU - Rafajłowicz, E. AU - Styczeń, K. AU - Rafajłowicz, W. TI - A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 313 EP - 326 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a5/ LA - en ID - IJAMCS_2012_22_2_a5 ER -
%0 Journal Article %A Rafajłowicz, E. %A Styczeń, K. %A Rafajłowicz, W. %T A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 313-326 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a5/ %G en %F IJAMCS_2012_22_2_a5
Rafajłowicz, E.; Styczeń, K.; Rafajłowicz, W. A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 313-326. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a5/
[1] Armaou, A. and Christofides P. D. (2002). Dynamic optimization of dissipative PDE systems using nonlinear order reduction, Chemical Engineering Science 57: 5083-5114.
[2] Aschemanna, H., Kostinb, G. V., Rauha, A. and Saurinb, V. V. (2010). Approaches to control design and optimization in heat transfer problems, International Journal of Computer and Systems Sciences 49(3): 380-391.
[3] Audet, C. and Dennis, J. E. (2004). A pattern search filter method for nonlinear programming without derivatives, SIAM Journal on Optimization 14(4): 980-1010.
[4] Bellavia, S., Macconi, M. and Morini, B. (2004). STRSCNE: A scaled trust-region solver for constrained nonlinear equations, Computational Optimization and Applications 28(1): 31-50.
[5] Betts, J. T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd Edn., Society for Industrial and Applied Mathematics, Philadelphia, PA.
[6] Biegler, L. T. (2010). Nonlinear Programming. Concepts, Algorithms, and Applications to Chemical Processes, SIAM, Philadelphia, PA.
[7] Burger, J. and Pogu, M. (1991). Functional and numerical solution of a control problem originating from heat transfer, Journal of Optimization Theory and Applications 68(1): 49-73.
[8] Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms, Journal of the Institute of Mathematics and Its Applications 6: 76-90.
[9] Butkovskiy, A. G. (1969). Distributed Control Systems, 1st Edn., Elsevier, New York, NY.
[10] Byrd, R. H., Curtis, F. E. and Nocedal, J. (2010). Infeasibility detection and SQP methods for nonlinear optimization, SIAM Journal on Optimization 20(5): 2281-2299.
[11] Chin, C. M. and Fletcher, R. (2003). On the global convergence of an SLP-filter algorithm that takes EQP steps, Mathematical Programming 96(1): 161-177.
[12] Chin, C. M., Rashid, A. H. A. and Nor, K. M. (2007). Global and local convergence of a filter line search method for nonlinear programming, Optimization Methods and Software 22(3): 365-390.
[13] Christofides, P. D. (2001). Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes, Birkhauser, Boston, MA.
[14] Conn, A. R., Gould, N. I. and Toint, P. L. (2000). Trust-Region Methods, MPS-SIAM Series on Optimization, SIAM, Philadelphia, PA.
[15] Demetriou, M. A. and Kazantzis, N. (2004). A new actuator activation policy for performance enhancement of controlled diffusion processes, Automatica 40(3): 415-421.
[16] El-Farra, N. E., Armaou, A. and Christofides, P. D. (2003). Analysis and control of parabolic PDE systems with input constraints, Automatica 39(3): 715-725.
[17] Fattorini, H. O. (1999). Infinite Dimensional Optimization and Control Theory, Cambridge University Press, Cambridge.
[18] Fletcher R. and Leyffer, S. (2002). Nonlinear programming without a penalty function, Mathematical Programming, Series A 91(2): 239-269.
[19] Fletcher, R., Leyffer, and Toint, P. L. (2002a). On the global convergence of a filter-SQP algorithm, SIAM Journal on Optimization 13(1): 44-59.
[20] Fletcher R., Gould, N. I. M., Leyffer, S., Toint, Ph. L. and Wachter, A. (2002b). Global convergence of trust-region SQP-filter algorithms for general nonlinear programming, SIAM Journal on Optimization 13(3): 635-659.
[21] Fletcher, R. (2010). The sequential quadratic programming method, in G. Di Pillo and F. Schoen (Eds.), Nonlinear Optimization, Lecture Notes in Mathematics, Vol. 1989, Springer-Verlag, Berlin/Heidelberg.
[22] Han, J. and Papalambros, P. Y. (2010). An SLP Filter algorithm for probabilistic analytical target cascading, Structural and Multidisciplinary Optimization 41(5): 935-945.
[23] Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich S. (2009). Optimization with PDE Constraints, Springer, Berlin/Heidelberg.
[24] Lasiecka, I. and Triggiani, R. (2000). Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol. I: Abstract Parabolic Systems, Vol. II: Abstract Hyperbolic-Like Systems over a Finite Time Horizon, Encyclopedia of Mathematics and Its Applications, Vol. 74, Cambridge University Press, Cambridge.
[25] Lasiecka, I. and Chueshow, I. (2010). Von Karman Evolution Equations: Well-posedness and Long Time Dynamics, Springer, Berlin/Heidelberg.
[26] Lasiecka, I. and Chueshow I. (2008). Long-time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of the American Mathematical Society, Philadephia, PA.
[27] Li, D. (2006). A new SQP-filter method for solving nonlinear programming problems, Journal of Computational Mathematics 24(5): 609-634.
[28] Nie, P. and Ma, C. (2006). A trust-region filter method for general non-linear programming, Applied Mathematics and Computation 172(2): 1000-1017.
[29] Nettaanmaki P. and Tiba, D. (1994). Optimal Control of Nonlinear Parabolic Systems, Marcel Dekker, New York, NY.
[30] Nocedal J. and Wright, S. J. (2006). Numerical Optimization, Springer, Berlin/Heidelberg.
[31] Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7): 629-639.
[32] Rafajłowicz, E. (2008). Testing homogeneity of coefficients in distributed systems with application to quality monitoring, IEEE Transactions on Control Systems Technology 16: 314-321.
[33] Rafajłowicz, E. and Rafajłowicz, W. (2010). Testing (non-)linearity of distributed-parameter systems from a video sequence, Asian Journal of Control 12(2): 453-461.
[34] Schittkowski, K. (2002). Numerical Data Fitting in Dynamical Systems; A Practical Introduction with Applications and Software, Applied Optimization, Vol. 77, Kluwer Academic Publishers, Dordrecht.
[35] Schittkowski, K. (2009). An active set strategy for solving optimization problems with up to 200,000,000 nonlinear constraints, Applied Numerical Mathematics 59(12): 2999-3007.
[36] Shen, C., Xue, W. and Pu, D. (2009). Global convergence of a tridimensional filter SQP algorithm based on the line search method, Applied Numerical Mathematics 59(2): 235-250.
[37] Shen, C., Xue, W. and Chen, X. (2010). Global convergence of a robust filter SQP algorithm, European Journal of Operational Research 206(1): 34-45.
[38] Skowron, M. and Styczeń, K., (2009). Evolutionary search for globally optimal stable multicycles in complex systems with inventory couplings, International Journal of Chemical Engineering, Article ID 137483, DOI:10.1155/2009/137483.
[39] Su, K. and Che, J. (2007). A modified SQP-filter method and its global convergence, Applied Mathematics and Computation 194(1): 92-101.
[40] Su, K. and Yu, Z. (2009). A modified SQP method with nonmonotone technique and its global convergence, Computers and Mathematics with Applications 57(2): 240-247.
[41] Troltzsch, F. (2010). Optimal Control of Partial Differential Equations. Theory, Methods and Applications, American Mathematical Society Press, Providence, RI.
[42] Turco, A. (2010). Adaptive filter SQP, in C. Blum and R. Battiti (Eds.), Learning and Intelligent Optimization, Lecture Notes in Computer Science, Vol. 6073, Springer-Verlag, Berlin/Heidelberg, pp. 68-81.
[43] Uciński, D. (2005). Optimal Measurement Methods for Distributed Parameter System Identification, CRC Press, London/New York, NY.
[44] Ulbrich, S. (2004). On the superlinear local convergence of a filter-SQP method, Mathematical Programming, Series B 100(1): 217-245.