Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_2_a4, author = {Patan, M.}, title = {Distributed scheduling of sensor networks for identification of spatio-temporal processes}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {299--311}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a4/} }
TY - JOUR AU - Patan, M. TI - Distributed scheduling of sensor networks for identification of spatio-temporal processes JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 299 EP - 311 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a4/ LA - en ID - IJAMCS_2012_22_2_a4 ER -
%0 Journal Article %A Patan, M. %T Distributed scheduling of sensor networks for identification of spatio-temporal processes %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 299-311 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a4/ %G en %F IJAMCS_2012_22_2_a4
Patan, M. Distributed scheduling of sensor networks for identification of spatio-temporal processes. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 299-311. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a4/
[1] Amouroux, M. and Babary, J. P. (1988). Sensor and control location problems, in M. G. Singh (Ed.), Systems Control Encyclopedia. Theory, Technology, Applications, Vol. 6, Pergamon Press, Oxford, pp. 4238-4245.
[2] Atkinson, A. C., Donev, A. N. and Tobias, R. (2007). Optimum Experimental Design, with SAS, Oxford University Press, Oxford.
[3] Boyd, S., Ghosh, A., Prabhakar, B. and Shah, D. (2006). Randomized gossip algorithms, IEEE Transactions on Information Theory 52(6): 2508-2530.
[4] Braca, P., Marano, S. and Matta, V. (2008). Enforcing consensus while monitoring the environment in wireless sensor network, IEEE Transactions on Signal Processing 56(7): 3375-3380.
[5] Cassandras, C. G. and Li, W. (2005). Sensor networks and cooperative control, European Journal of Control 11(4-5): 436-463.
[6] COMSOL AB (2007). COMSOLMultiphysics Modelling Guide, ver. 3.4.
[7] Demetriou, M. A. (2000). Activation policy of smart controllers for flexible structures with multiple actuator/sensor pairs, Proceedings of the 14th International Symposium on Mathematical Theory of Networks and Systems, Perpignan, France, (on CD-ROM).
[8] Demetriou, M. A. and Hussein, I. I. (2009). Estimation of spatially distributed processes using mobile spatially distributed sensor network, SIAM Journal on Control and Optimization 48(1): 266-291.
[9] Fedorov, V. V. and Hackl, P. (1997). Model-Oriented Design of Experiments, Lecture Notes in Statistics, Vol. 125, Springer-Verlag, New York, NY.
[10] Jeremić, A. and Nehorai, A. (2000). Landmine detection and localization using chemical sensor array processing, IEEE Transactions on Signal Processing 48(5): 1295-1305.
[11] Joshi, S. and Boyd, S. (2009). Sensor selection via convex optimization, IEEE Transactions on Signal Processing 57(2): 451-462.
[12] Kempe, D., Dobra, A. and Gehrke, J. (2003). Gossip-based computation of aggregate information, Proceedings of the Conference on Foundations of Computer Science, Cambridge, MA, USA, pp. 482-491.
[13] Kubrusly, C. S. and Malebranche, H. (1985). Sensors and controllers location in distributed systems-A survey, Automatica 21(2): 117-128.
[14] Martínez, S. and Bullo, F. (2006). Optimal sensor placement and motion coordination for target tracking, Automatica 42(4): 661-668.
[15] Müller, W. G. (2007). Collecting Spatial Data: Optimum Design of Experiments for Random Fields, 3rd Edn., Physica-Verlag, Heidelberg.
[16] Nehorai, A., Porat, B. and Paldi, E. (1995). Detection and localization of vapor-emitting sources, IEEE Transactions on Signal Processing 43(1): 243-253.
[17] Ögren, P., Fiorelli, E. and Leonard, N. E. (2004). Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment, IEEE Transactions on Automatic Control 49(8): 1292-1302.
[18] Patan, M. (2004). Optimal Observation Strategies for Parameter Estimation of Distributed Systems, Zielona Góra University Press, Zielona Góra, available at http://www.zbc.zgora.pl.
[19] Patan, M. (2006). Optimal activation policies for continous scanning observations in parameter estimation of distributed systems, International Journal of Systems Science 37(11): 763-775.
[20] Patan, M. (2008). A parallel sensor scheduling technique for fault detection in distributed parameter systems, in E. Luque, T. Margalef and D. Benítez (Eds.) Euro-Par 2008: Parallel Processing, Lecture Notes in Computer Science, Vol. 5168, Springer-Verlag, Berlin/Heidelberg, pp. 833-843.
[21] Patan, M. (2009a). Decentralized mobile sensor routing for parameter estimation of distributed systems, Proceedings of the 1st IFAC Workshop on Estimation and Control of Networked Systems, NecSys 2009, Venice, Italy, pp. 210-215.
[22] Patan, M. (2009b). Distributed configuration of sensor networks for parameter estimation in spatio-temporal systems, Proceedings of the European Control Conference, ECC'09, Budapest, Hungary, pp. 4871-4876.
[23] Patan, M., Chen, Y. and Tricaud, C. (2008). Resource constrained sensor routing for parameter estimation of distributed systems, Proceedings of the 17th IFAC World Congress, Seoul, South Korea, (on DVD-ROM).
[24] Patan, M. and Patan, K. (2005). Optimal observation strategies for model-based fault detection in distributed systems, International Journal of Control 78(18): 1497-1510.
[25] Patan, M. and Uciński, D. (2005). Optimal activation strategy of discrete scanning sensors for fault detection in distributed parameter systems, Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, (on CD-ROM).
[26] Patan, M. and Uciński, D. (2008). Configuring a sensor network for fault detection in distributed parameter systems, International Journal of Applied Mathematics and Computer Science 18(4): 513-524, DOI: 10.2478/v10006-008-0045-4.
[27] Patan, M. and Uciński, D. (2010a). Sensor scheduling with selection of input experimental conditions for identification of distributed systems, Methods and Models in Automation and Robotics, MMAR 2010: 15th International Conference, Międzyzdroje, Poland, pp. 148-153.
[28] Patan, M. and Uciński, D. (2010b). Time-constrained sensor scheduling for parameter estimation of distributed systems, Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, GA, USA, pp. 7-12.
[29] Point, N., Vande Wouwer, A. and Remy, M. (1996). Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design, Control Engineering Practice 4(11): 1553-1562.
[30] Porat, B. and Nehorai, A. (1996). Localizing vapor-emitting sources by moving sensors, IEEE Transactions on Signal Processing 44(4): 1018-1021.
[31] Quereshi, Z. H., Ng, T. S. and Goodwin, G. C. (1980). Optimum experimental design for identification of distributed parameter systems, International Journal of Control 31(1): 21-29.
[32] Rafajłowicz, E. (1983). Optimal experiment design for identification of linear distributed-parameter systems: Frequency domain approach, IEEE Transactions on Automatic Control 28(7): 806-808.
[33] Rafajłowicz, E. (1986). Optimum choice of moving sensor trajectories for distributed parameter system identification, International Journal of Control 43(5): 1441-1451.
[34] Rao, M. M. (1987). Measure Theory and Integration, John Wiley Sons, New York, NY.
[35] Song, Z., Chen, Y., Sastry, C. and Tas, N. (2009). Optimal Observation for Cyber-physical Systems: A Fisher-Information-Matrix-Based Approach, Springer-Verlag, Berlin/Heidelberg.
[36] Sun, N.-Z. (1994). Inverse Problems in Groundwater Modeling, Theory and Applications of Transport in Porous Media, Kluwer Academic Publishers, Dordrecht.
[37] Uciński, D. (2000a). Optimal selection of measurement locations for parameter estimation in distributed processes, International Journal of Applied Mathematics and Computer Science 10(2): 357-379.
[38] Uciński, D. (2000b). Optimal sensor location for parameter estimation of distributed processes, International Journal of Control 73(13): 1235-1248.
[39] Uciński, D. (2005). Optimal Measurement Methods for Distributed-Parameter System Identification, CRC Press, Boca Raton, FL.
[40] Uciński, D. and Chen, Y. (2005). Time-optimal path planning of moving sensors for parameter estimation of distributed systems, Proceedings of the 44th IEEE Conference on Decision and Control/European Control Conference 2005, Seville, Spain, (on CD-ROM).
[41] Uciński, D. and Demetriou, M. A. (2004). An approach to the optimal scanning measurement problem using optimum experimental design, Proceedings of the American Control Conference, Boston, MA, USA, (on CD-ROM).
[42] Uciński, D. and Patan, M. (2002). Optimal location of discrete scanning sensors for parameter estimation of distributed systems, Proceedings of the 15th IFAC World Congress, Barcelona, Spain, (on CD-ROM).
[43] Uciński, D. and Patan, M. (2007). D-optimal design of a monitoring network for parameter estimation of distributed systems, Journal of Global Optimization 39(2): 291-322.
[44] Uciński, D. and Patan, M. (2010). Sensor network design for the estimation on spatially distributed processes, International Journal of Applied Mathematics and Computer Science 20(3): 459-481, DOI: 10.2478/v10006-010-0034-2.
[45] van de Wal, M. and de Jager, B. (2001). A review of methods for input/output selection, Automatica 37(4): 487-510.
[46] Xiao, L. and Boyd, S. (2004). Fast linear iterations for distributed averaging, Systems and Control Letters 53(1): 65-78.