Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 401-408.

Voir la notice de l'article provenant de la source Library of Science

Asymptotic stability of models of 2D continuous-discrete linear systems is considered. Computer methods for investigation of the asymptotic stability of the Roesser type model are given. The methods require computation of eigenvalue-loci of complex matrices or evaluation of complex functions. The effectiveness of the stability tests is demonstrated on numerical examples.
Keywords: continuous-discrete system, hybrid system, stability, computer methods
Mots-clés : układ ciągło-dyskretny, system hybrydowy, metoda komputerowa
@article{IJAMCS_2012_22_2_a12,
     author = {Bus{\l}owicz, M. and Ruszewski, A.},
     title = {Computer methods for stability analysis of the {Roesser} type model of {2D} continuous-discrete linear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {401--408},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a12/}
}
TY  - JOUR
AU  - Busłowicz, M.
AU  - Ruszewski, A.
TI  - Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2012
SP  - 401
EP  - 408
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a12/
LA  - en
ID  - IJAMCS_2012_22_2_a12
ER  - 
%0 Journal Article
%A Busłowicz, M.
%A Ruszewski, A.
%T Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems
%J International Journal of Applied Mathematics and Computer Science
%D 2012
%P 401-408
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a12/
%G en
%F IJAMCS_2012_22_2_a12
Busłowicz, M.; Ruszewski, A. Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 401-408. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a12/

[1] Bistritz, Y. (2003). A stability test for continuous-discrete bivariate polynomials, Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, Vol. 3, pp. 682-685.

[2] Bistritz, Y. (2004). Immittance and telepolation-based procedures to test stability of continuous-discrete bivariate polynomials, Proceedings of the 2004 IEEE International Symposium on Circuits and Systems, Vancouver, Canada, Vol. 3, pp. 293-296.

[3] Busłowicz, M. (1997). Stability of Linear Time-invariant Systems with Uncertain Parameters, Technical University of Białystok, Białystok, (in Polish).

[4] Busłowicz, M. (2010a). Robust stability of the new general 2D model of a class of continuous-discrete linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(4): 561-565.

[5] Busłowicz, M. (2010b). Stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 56(2): 133-135.

[6] Busłowicz, M. (2011a). Computational methods for investigation of stability of models of 2D continuous-discrete linear systems, Journal of Automation, Mobile Robotics and Intelligent Systems 5(1): 3-7.

[7] Busłowicz, M. (2011b). Improved stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 57(2): 188-189.

[8] Busłowicz, M. and Ruszewski, A. (2011). Stability investigation of continuous-discrete linear systems, Pomiary, Automatyka, Robotyka 2(2): 566-575, (on CD-ROM, in Polish).

[9] Dymkov, M. (2005). Extremal Problems in Multiparameter Control Systems, BGEU Press, Minsk, (in Russian).

[10] Dymkov, M., Gaishun, I., Rogers, E., Gałkowski, K. and Owens, D. H. (2004). Control theory for a class of 2D continuous-discrete linear systems, International Journal of Control 77(9): 847-860.

[11] Dymkov M., Rogers E., Dymkou S., Gałkowski, K. and Owens D. H. (2003). Delay system approach to linear differential repetitive processes, Proceedings of the IFAC Workshop on Time-Delay Systems (TDS 2003), Rocquencourt, France, (CD-ROM).

[12] Gałkowski, K., Rogers, E., Paszke, W. and Owens, D. H. (2003). Linear repetitive process control theory applied to a physical example, International Journal of Applied Mathematics and Computer Science 13(1): 87-99.

[13] Guiver, J. P. and Bose, N. K. (1981). On test for zero-sets of multivariate polynomials in noncompact polynomials, Proceedings of the IEEE 69(4): 467-469.

[14] Hespanha, J. (2004). Stochastic hybrid systems: Application to communication networks, Technical report, Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA.

[15] Johanson, K., Lygeros, J. and Sastry, S. (2004). Modelling hybrid systems, in H. Unbehauen (Ed.), Encyclopedia of Life Support Systems, EOLSS, Berlin.

[16] Kaczorek, T. (1998). Vectors and Matrices in Automatics and Electrotechnics, WNT, Warsaw, p. 70, (in Polish).

[17] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.

[18] Kaczorek, T. (2007). Positive 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(4): 351-358.

[19] Kaczorek, T. (2008a). Positive fractional 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(3): 273-277.

[20] Kaczorek, T. (2008b). Realization problem for positive 2D hybrid systems, International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 27(3): 613-623.

[21] Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Sciences, Vol. 411, Springer-Verlag, Berlin.

[22] Kaczorek, T., Marchenko, V. and Sajewski, Ł. (2008). Solvability of 2D hybrid linear systems-Comparison of the different methods, Acta Mechanica et Automatica 2(2): 59-66.

[23] Keel, L. H. and Bhattacharyya, S. P. (2000). A generalization of Mikhailov's criterion with applications, Proceedings of the American Control Conference, Chicago, IL, USA, Vol. 6, pp. 4311-4315.

[24] Liberzon, D. (2003). Switching in Systems and Control, Birkhauser, Boston, MA.

[25] Sajewski, Ł. (2009). Solution of 2D singular hybrid linear systems, Kybernetes 38(7/8): 1079-1092.

[26] Marchenko V. M. and Loiseau J. J. (2009). On the stability of hybrid difference-differential systems, Differential Equation 45(5), 743-756.

[27] Rogers, E., Gałkowski, K. and Owens, D. H. (2007). Control Systems Theory and Applications for Linear Repetitive Processes, Lecture Notes in Control and Information Sciences, Vol. 349, Springer-Verlag, Berlin.

[28] Xiao, Y. (2001). Stability test for 2-D continuous-discrete systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, Vol. 4, pp. 3649-3654.