Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_2_a12, author = {Bus{\l}owicz, M. and Ruszewski, A.}, title = {Computer methods for stability analysis of the {Roesser} type model of {2D} continuous-discrete linear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {401--408}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a12/} }
TY - JOUR AU - Busłowicz, M. AU - Ruszewski, A. TI - Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 401 EP - 408 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a12/ LA - en ID - IJAMCS_2012_22_2_a12 ER -
%0 Journal Article %A Busłowicz, M. %A Ruszewski, A. %T Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 401-408 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a12/ %G en %F IJAMCS_2012_22_2_a12
Busłowicz, M.; Ruszewski, A. Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 2, pp. 401-408. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_2_a12/
[1] Bistritz, Y. (2003). A stability test for continuous-discrete bivariate polynomials, Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, Vol. 3, pp. 682-685.
[2] Bistritz, Y. (2004). Immittance and telepolation-based procedures to test stability of continuous-discrete bivariate polynomials, Proceedings of the 2004 IEEE International Symposium on Circuits and Systems, Vancouver, Canada, Vol. 3, pp. 293-296.
[3] Busłowicz, M. (1997). Stability of Linear Time-invariant Systems with Uncertain Parameters, Technical University of Białystok, Białystok, (in Polish).
[4] Busłowicz, M. (2010a). Robust stability of the new general 2D model of a class of continuous-discrete linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(4): 561-565.
[5] Busłowicz, M. (2010b). Stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 56(2): 133-135.
[6] Busłowicz, M. (2011a). Computational methods for investigation of stability of models of 2D continuous-discrete linear systems, Journal of Automation, Mobile Robotics and Intelligent Systems 5(1): 3-7.
[7] Busłowicz, M. (2011b). Improved stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 57(2): 188-189.
[8] Busłowicz, M. and Ruszewski, A. (2011). Stability investigation of continuous-discrete linear systems, Pomiary, Automatyka, Robotyka 2(2): 566-575, (on CD-ROM, in Polish).
[9] Dymkov, M. (2005). Extremal Problems in Multiparameter Control Systems, BGEU Press, Minsk, (in Russian).
[10] Dymkov, M., Gaishun, I., Rogers, E., Gałkowski, K. and Owens, D. H. (2004). Control theory for a class of 2D continuous-discrete linear systems, International Journal of Control 77(9): 847-860.
[11] Dymkov M., Rogers E., Dymkou S., Gałkowski, K. and Owens D. H. (2003). Delay system approach to linear differential repetitive processes, Proceedings of the IFAC Workshop on Time-Delay Systems (TDS 2003), Rocquencourt, France, (CD-ROM).
[12] Gałkowski, K., Rogers, E., Paszke, W. and Owens, D. H. (2003). Linear repetitive process control theory applied to a physical example, International Journal of Applied Mathematics and Computer Science 13(1): 87-99.
[13] Guiver, J. P. and Bose, N. K. (1981). On test for zero-sets of multivariate polynomials in noncompact polynomials, Proceedings of the IEEE 69(4): 467-469.
[14] Hespanha, J. (2004). Stochastic hybrid systems: Application to communication networks, Technical report, Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA.
[15] Johanson, K., Lygeros, J. and Sastry, S. (2004). Modelling hybrid systems, in H. Unbehauen (Ed.), Encyclopedia of Life Support Systems, EOLSS, Berlin.
[16] Kaczorek, T. (1998). Vectors and Matrices in Automatics and Electrotechnics, WNT, Warsaw, p. 70, (in Polish).
[17] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.
[18] Kaczorek, T. (2007). Positive 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(4): 351-358.
[19] Kaczorek, T. (2008a). Positive fractional 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(3): 273-277.
[20] Kaczorek, T. (2008b). Realization problem for positive 2D hybrid systems, International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 27(3): 613-623.
[21] Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Sciences, Vol. 411, Springer-Verlag, Berlin.
[22] Kaczorek, T., Marchenko, V. and Sajewski, Ł. (2008). Solvability of 2D hybrid linear systems-Comparison of the different methods, Acta Mechanica et Automatica 2(2): 59-66.
[23] Keel, L. H. and Bhattacharyya, S. P. (2000). A generalization of Mikhailov's criterion with applications, Proceedings of the American Control Conference, Chicago, IL, USA, Vol. 6, pp. 4311-4315.
[24] Liberzon, D. (2003). Switching in Systems and Control, Birkhauser, Boston, MA.
[25] Sajewski, Ł. (2009). Solution of 2D singular hybrid linear systems, Kybernetes 38(7/8): 1079-1092.
[26] Marchenko V. M. and Loiseau J. J. (2009). On the stability of hybrid difference-differential systems, Differential Equation 45(5), 743-756.
[27] Rogers, E., Gałkowski, K. and Owens, D. H. (2007). Control Systems Theory and Applications for Linear Repetitive Processes, Lecture Notes in Control and Information Sciences, Vol. 349, Springer-Verlag, Berlin.
[28] Xiao, Y. (2001). Stability test for 2-D continuous-discrete systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, Vol. 4, pp. 3649-3654.