Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_1_a8, author = {Jain, T. and Yam\'e, J. J. and Sauter, D.}, title = {Model-free reconfiguration mechanism for fault tolerance}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {125--137}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a8/} }
TY - JOUR AU - Jain, T. AU - Yamé, J. J. AU - Sauter, D. TI - Model-free reconfiguration mechanism for fault tolerance JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 125 EP - 137 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a8/ LA - en ID - IJAMCS_2012_22_1_a8 ER -
%0 Journal Article %A Jain, T. %A Yamé, J. J. %A Sauter, D. %T Model-free reconfiguration mechanism for fault tolerance %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 125-137 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a8/ %G en %F IJAMCS_2012_22_1_a8
Jain, T.; Yamé, J. J.; Sauter, D. Model-free reconfiguration mechanism for fault tolerance. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 1, pp. 125-137. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a8/
[1] Baldi, S., Battistelli, G., Mosca, E. and Tesi, P. (2010). Multimodel unfalsified adaptive switching supervisory control, Automatica 46(2): 249-259.
[2] Belur, M. N. and Trentelman, H. L. (2002). Stabilization, pole placement and regular implementability, IEEE Transactions on Automatic Control 47(5): 735-744.
[3] Blanke, M., Kinnaert, M., Staroswiecki, M. and Lunze, J. (2003). Diagnosis and Fault Tolerant Control, Springer-Verlag, Berlin.
[4] Ding, S., Zhang, P., Naik, A., Ding, E. and Huang, B. (2009). Subspace method aided data-driven design of fault detection and isolation systems, Journal of Process Control 19(9): 1496-1510.
[5] Grimble, M. (1993). Robust Industrial Control: Optimal Design Approach for Polynomial Systems, Prentice Hall, Upper Saddle River, NJ.
[6] Hespanha, J., Liberzon, D. and Morse, A. (2003). Overcoming the limitations of adaptive control by means of logic-based switching, Systems Control Letters 49(1): 49-65.
[7] Jain, T., Yamé, J. J. and Sauter, D. (2010). A model based 2-DOF fault tolerant control strategy, 18th IEEE Mediterranean Conference on Control and Automation, Marrakech, Morocco, pp. 1073-1078.
[8] Morse, A. (2008). Lectures notes on logically switched dynamical systems, in P. Nistri and G. Stefani (Eds.) Nonlinear and Optimal Control Theory, Lectures Notes in Mathematics, Vol. 1932, Springer-Verlag, Berlin/Heidelberg, pp. 61-161.
[9] Oishi, M., Mitchell, I., Bayen, A., Tomlin, C. and Degani, A. (2002). Hybrid verification of an interface for an automatic landing, 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, Vol. 2, pp. 1607-1613.
[10] Polderman, J. W. (2000). Sequential continuous time adaptive control: A behavioral approach, Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, Vol. 3, pp. 2484-2487.
[11] Polderman, J. W. and Willems, J. C. (1997). Introduction to Mathematical Systems Theory: A Behavioral Approach, Springer-Verlag, New York, NY.
[12] Safonov, M. and Tsao, T.-C. (1997). The unfalsified control concept and learning, IEEE Transactions on Automatic Control 42(6): 843-847.
[13] Stefanovic, M. and Safonov, M. (2008). Safe adaptive switching control: Stability and convergence, IEEE Transactions on Automatic Control 53(9): 2012-2021.
[14] van der Schaft, A. J. (2003). Achievable behavior of general systems, Systems Control Letters 49(2): 141-149.
[15] Wang, R. and Safonov, M. (2005). Stability of unfalsified adaptive control using multiple controllers, Proceedings of the American Control Conference, Portland, OR, USA, Vol. 5, pp. 3161-3167.
[16] Weiland, S., Stoorvogel, A. A. and Jager, B. (1997). A behavioral approach to the H-infinity optimal control problem, Systems Control Letters 32(5): 323-334.
[17] Willems, J. C. (1986). From time series to linear systems, Part II: Exact modeling, Automatica 22(6): 675-694.
[18] Yamé, J. J. (2005). Modeling and simulation of an aircraft in landing approach, Technical report, Research Centre for Automatic Control, Nancy.
[19] Yamé, J. J. and Sauter, D. (2008). A real-time model-free reconfiguration mechanism for fault-tolerance: Application to a hydraulic process, Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008, Hanoi, Vietnam, pp. 91-96.
[20] Yang, H., Jiang, B. and Staroswiecki, M. (2009). Supervisory fault tolerant control for a class of uncertain nonlinear systems, Automatica 45(10): 2319-2324.
[21] Zerz, E. (2008). Behavioral systems theory: A survey, International Journal of Applied Mathematics and Computer Science 18(3): 265-270, DOI: 10.2478/v10006-008-0024-9.
[22] Zhang, Y. and Jiang, J. (1999). Design of integrated fault detection, diagnosis and reconfigurable control systems, 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, pp. 3587-3592.
[23] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229-252.
[24] Zhao, Q. and Jiang, J. (1998). Reliable state feedback control systems design against actuator failures, Automatica 34(10): 1267-1272.