Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_1_a7, author = {Edwards, C. and Alwi, H. and Tan, C. P.}, title = {Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {109--124}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a7/} }
TY - JOUR AU - Edwards, C. AU - Alwi, H. AU - Tan, C. P. TI - Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 109 EP - 124 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a7/ LA - en ID - IJAMCS_2012_22_1_a7 ER -
%0 Journal Article %A Edwards, C. %A Alwi, H. %A Tan, C. P. %T Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 109-124 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a7/ %G en %F IJAMCS_2012_22_1_a7
Edwards, C.; Alwi, H.; Tan, C. P. Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 1, pp. 109-124. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a7/
[1] Alwi, H. and Edwards, C. (2008a). Fault detection and fault tolerant control of a civil aircraft using a sliding-mode-based scheme, IEEE Transactions on Control Systems Technology 16(3): 499-510.
[2] Alwi, H. and Edwards, C. (2008b). Fault tolerant control using sliding modes with on-line control allocation, Automatica 44(7): 1859-1866.
[3] Alwi, H., Edwards, C., Stroosma, O. and Mulder, J. A. (2008). Fault tolerant sliding mode control design with piloted simulator evaluation, AIAA Journal of Guidance, Control and Dynamics 31(5): 1186-1201.
[4] Alwi, H., Edwards, C., Stroosma, O. and Mulder, J. A. (2010). Evaluation of a sliding mode fault tolerant controller for the EL-AL incident, AIAA Journal of Guidance, Control and Dynamics 33(3): 667-677.
[5] Alwi, H., Edwards, C. and Tan, C. (2009a). Sliding mode estimation schemes for incipient sensor faults, Automatica 45(7): 1679-1685.
[6] Banda, S. (1999). Special issue editorial, International Journal of Robust and Nonlinear Control 9(14): 997-998.
[7] Bejarano, F., Fridman, L. and Poznyak, A. (2007). Hierarchical observer for strongly detectable systems via second order sliding mode, Proceedings of the IEEE CDC'07, New Orleans, LA, USA, pp. 3709-3713.
[8] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, 2nd Edn., Springer, Berlin/Heidelberg.
[9] Bošković, J. D. and Mehra, R. K. (2002). Control allocation in overactuated aircraft under position and rate limiting, Proceedings of the American Control Conference, Anchorage, AL, USA, pp. 791-796.
[10] Boyd, S., Ghaoui, L.E., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in Systems and Control Theory, SIAM, Philadelphia, PA.
[11] Buffington, J., Chandler, P. and Pachter, M. (1999). On-line system identification for aircraft with distributed control effectors, International Journal of Robust and Nonlinear Control 9(14): 1033-1049.
[12] Chen, J. and Patton, R. J. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publishers, Boston, MA.
[13] Chen, J., Patton, R. and Zhang, H. (1996). Design of unknown input observers and robust fault detection filters, International Journal of Control 63(1): 85-105.
[14] Chen, J. and Zhang, H. (1991). Robust detection of faulty actuators via unknown input observers, International Journal of Systems Science 22(10): 1829-1839.
[15] Chen,W. and Saif, M. (2007). Actuator fault diagnosis for uncertain linear systems using a high-order sliding-mode robust differentiator, International Journal of Robust and Nonlinear Control 18(4-5): 413-426.
[16] Darouach, M. (1994). On the novel approach to the design of unknown input observers, IEEE Transactions on Automatic Control 39(3): 698-699.
[17] Davidson, J. B., Lallman, F. J. and Bundick, W. T. (2001). Real time adaptive control allocation applied to a high performance aircraft, 5th SIAM Conference on Control Its Application, San Diego, CA, USA, pp. 1-11.
[18] Dávila, A., Moreno, J. A. and Fridman, L. (2010). Variable gains super-twisting algorithm: A Lyapunov based design, IEEE American Control Conference, Baltimore, MD, USA, pp. 968-973.
[19] Draženović, B. (1969). The invariance conditions in variable structure systems, Automatica 5(3): 287-295.
[20] Edelmayer, A., Bokor, J., Szabó, Z. and Szigeti, F. (2004). Input reconstruction by means of system inversion: A geometric approach to fault detection and isolation in nonlinear systems, International Journal of Applied Mathematics and Computer Science 14(2): 189-199.
[21] Edwards, C., Lombaerts, T. and Smaili, H. (Eds.) (2010). Fault Tolerant Flight Control: A Benchmark Challenge, Lecture Notes in Control and Information Sciences, Vol. 399, Springer-Verlag, Berlin/Heidelberg.
[22] Edwards, C. and Spurgeon, S. (1994). On the development of discontinuous observers, International Journal of Control 59(4): 1211-1229.
[23] Edwards, C. and Spurgeon, S. K. (1998). Sliding Mode Control: Theory and Applications, Taylor Francis, London.
[24] Edwards, C. and Spurgeon, S. K. (2000). A sliding mode control observer based FDI scheme for the ship benchmark, European Journal of Control 6(4): 341-356.
[25] Edwards, C., Spurgeon, S. and Patton, R. (2000). Sliding mode observers for fault detection, Automatica 36(4): 541-553.
[26] Edwards, C. and Tan, C. P. (2006). A comparison of sliding mode and unknown input observers for fault reconstruction, European Journal of Control 12(3): 245-260.
[27] Enns, D. (1998). Control allocation approaches, AIAA Guidance, Navigation and Control Conference and Exhibit, Boston, MA, USA, pp. 98-108.
[28] Floquet, T., Edwards, C. and Spurgeon, S. (2007). On sliding mode observers for systems with unknown inputs, International Journal of Adaptive Control and Signal Processing 21(8-9): 638-656.
[29] Forssell, L. and Nilsson, U. (2005). ADMIRE, the aero-data model in a research environment version 4.0: Model description, Technical Report FOI-R-1624-SE, Swedish Defence Agency (FOI), Stockholm.
[30] Fridman, L., Davila, J. and Levant, A. (2007). High-order sliding-mode observation and fault detection, Proceedings of the IEEE Conference on Decision and Control, New Orleans, LA, pp. 4317-4322.
[31] Härkegård, O. and Glad, S. T. (2005). Resolving actuator redundancy-Optimal control vs. control allocation, Automatica 41(1): 137-144.
[32] Haskara, I., Ozguner, U. and Utkin, V. (1998). On sliding mode observers via equivalent control approach, International Journal of Control 71(6): 1051-1067.
[33] Hess, R. A. and Wells, S. R. (2003). Sliding mode control applied to reconfigurable flight control design, Journal of Guidance, Control and Dynamics 26(3): 452-462.
[34] Krasnova, S., Utkin, V. and Mikheev, Y. (2001). Cascade design of state observers, Automation and Remote Control 62(2): 207-226.
[35] Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control, International Journal of Control 76(9-10): 924-41.
[36] Moreno, J. A. and Osorio, M. (2008). A Lyapunov approach to second-order sliding mode controllers and observers, 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 2856-2861.
[37] Ng, K., Tan, C., Edwards, C. and Kuang, Y. (2007). New results in robust actuator fault reconstruction in linear uncertain systems, International Journal Robust and Nonlinear Control 17(4): 1294-1319.
[38] Patton, R. (1997). Robustness in model-based fault diagnosis: The 1997 situation, IFAC Annual Reviews 21: 101-121.
[39] Patton, R. and Chen, J. (1993). Optimal unknown input distribution matrix selection in robust fault diagnosis, Automatica 29(4): 837-841.
[40] Patton, R., Frank, P. and Clark, R. (1989). Fault Diagnosis in Dynamic Systems: Theory and Application, Prentice Hall, New York, NY.
[41] Saif, M. and Guan, Y. (1993). A new approach to robust fault detection and identification, IEEE Transactions on Aerospace and Electronic Systems 29(3): 685-695.
[42] Sharam, R. and Aldeen, M. (2007). Fault detection in nonlinear systems with unknown inputs using sliding mode observer, Proceedings of the American Control Conference, New York, NY, USA, pp. 432-437.
[43] Shtessel, Y., Buffington, J. and Banda, S. (2002). Tailless aircraft flight control using multiple time scale re-configurable sliding modes, IEEE Transactions on Control Systems Technology 10(2): 288-296.
[44] Tan, C. and Edwards, C. (2010). Robust fault reconstruction in uncertain linear systems using multiple sliding mode observers in cascade, IEEE Transactions on Automatic Control 55(4): 855-867.
[45] Tan, C. P. and Edwards, C. (2002). Sliding mode observers for detection and reconstruction of sensor faults, Automatica 38(2): 1815-1821.
[46] Tan, C. P. and Edwards, C. (2003). Sliding mode observers for robust detection and reconstruction of actuator and sensor faults, International Journal of Robust and Nonlinear Control 13(5): 443-463.
[47] Theilliol, D., Join, C. and Zhang, Y. (2008). Actuator fault tolerant control design based on a reconfigurable reference input, International Journal of Applied Mathematics and Computer Science 18(4): 553-560, DOI: 10.2478/v10006-008-0048-1.
[48] Utkin, V. I. (1992). Sliding Modes in Control Optimization, Springer-Verlag, Berlin.
[49] Wang, J., Tsang, K., Li, G. and Zhang, L. (2003). Cascade observer-based fault diagnosis for nonlinear systems, Proceedings of the IASTED International Conference on Modelling, Simulation and Optimization, Banff, Alberta, Canada, pp. 253-258.
[50] Zhou, K., Doyle, J. and Glover, K. (1996). Robust and Optimal Control, Prentice Hall, Upper Siddle River, NJ.