Supervisory fault tolerant control with integrated fault detection and isolation: a switched system approach
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 1, pp. 87-97.

Voir la notice de l'article provenant de la source Library of Science

This paper focuses on supervisory fault tolerant control design for a class of systems with faults ranging over a finite cover. The proposed framework is based on a switched system approach, and relies on a supervisory switching within a family of pre-computed candidate controllers without individual fault detection and isolation schemes. Each fault set can be accommodated either by one candidate controller or by a set of controllers under an appropriate switching law. Two aircraft examples are included to illustrate the efficiency of the proposed method.
Keywords: fault-tolerant control, fault detection, fault isolation, switching control, switched systems
Mots-clés : sterowanie tolerujące uszkodzenia, detekcja uszkodzeń, lokalizacja uszkodzeń, sterowanie rozdzielcze, układ komutowany
@article{IJAMCS_2012_22_1_a5,
     author = {Yang, H. and Jiang, B. and Cocquempot, V. and Lu, L.},
     title = {Supervisory fault tolerant control with integrated fault detection and isolation: a switched system approach},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {87--97},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a5/}
}
TY  - JOUR
AU  - Yang, H.
AU  - Jiang, B.
AU  - Cocquempot, V.
AU  - Lu, L.
TI  - Supervisory fault tolerant control with integrated fault detection and isolation: a switched system approach
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2012
SP  - 87
EP  - 97
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a5/
LA  - en
ID  - IJAMCS_2012_22_1_a5
ER  - 
%0 Journal Article
%A Yang, H.
%A Jiang, B.
%A Cocquempot, V.
%A Lu, L.
%T Supervisory fault tolerant control with integrated fault detection and isolation: a switched system approach
%J International Journal of Applied Mathematics and Computer Science
%D 2012
%P 87-97
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a5/
%G en
%F IJAMCS_2012_22_1_a5
Yang, H.; Jiang, B.; Cocquempot, V.; Lu, L. Supervisory fault tolerant control with integrated fault detection and isolation: a switched system approach. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 1, pp. 87-97. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a5/

[1] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. and Cayirci, E. (2002). Wireless sensor networks: A survey, Computer Networks 38(4): 393-422.

[2] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, 2nd Edn., Springer-Verlag, Berlin/Heidelberg.

[3] Giulietti, F., Pollini, L. and Innocenti, M. (2000). Autonomous formation flight, IEEE Control Systems Magazine 20(6): 34-44.

[4] Jiang, B., Yang, H. and Shi, P. (2010). Switching fault tolerant control design via global dissipativity, International Journal of Systems Science 41(8): 1003-1012.

[5] Jiang, Z. P., Teel, A. R. and Praly, L. (1994). Small-gain theorem for ISS systems and applications, Mathematics of Control, Signals, and Systems 7(1): 95-120.

[6] Jiang, Z. P. and Wang, Y. (2008). A generalization of the nolinear small-gain theorem for large-scale complex systems, Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, pp. 1188-1193.

[7] Mu, X., Zhang, W. and Zhang, W. (2008). An adaptive backstepping design for longitudinal flight path control, Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, pp. 5249-5251.

[8] Parisini, T. and Sacone, S. (2001). Stable hybrid control based on discrete-event automata and receding-horizon neural regulators, Automatica 37(5): 1279-1292.

[9] Patton, R. J., Frank, P. M. and Clark, R. N. (2000). Issues of Fault Diagnosis for Dynamic Systems, Spring-Verlag, London.

[10] Sontag, E. and Wang, Y. (1996). New characterizations of inputto-state stability, IEEE Transactions on Automatic Control 41(9): 1283-1294.

[11] Staroswiecki, M. and Gehin, A.-L. (2001). From control to supervision, Annual Reviews in Control 25(1): 1-11.

[12] Yang, H., Cocquempot, V. and Jiang, B. (2009). On stabilization of switched nonlinear systems with unstable modes, Systems Control Letters 58(10): 703-708.

[13] Yang, H., Jiang, B. and Cocquempot, V. (2009). A fault tolerant control framework for periodic switched nonlinear systems, International Journal of Control 82(1): 117-129.

[14] Yang, H., Jiang, B. and Cocquempot, V. (2010). Fault Tolerant Control Design For Hybrid Systems, Springer-Verlag, Berlin/Heidelberg.

[15] Yang, H., Jiang, B. and Staroswiecki, M. (2009). Supervisory fault tolerant control for a class of uncertain nonlinear systems, Automatica 45(10): 2319-2324.

[16] Zhang, X., Polycarpou, M. M. and Parisini, T. (2008). Design and analysis of a fault isolation scheme for a class of uncertain nonlinear systems, Annual Reviews in Control 32(1): 107-121.

[17] Zhang, Y. M. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229-252.