Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_1_a3, author = {Ungermann, M. and Lunze, J. and Schwarzmann, D.}, title = {Test signal generation for service diagnosis based on local structural properties}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {55--65}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a3/} }
TY - JOUR AU - Ungermann, M. AU - Lunze, J. AU - Schwarzmann, D. TI - Test signal generation for service diagnosis based on local structural properties JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 55 EP - 65 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a3/ LA - en ID - IJAMCS_2012_22_1_a3 ER -
%0 Journal Article %A Ungermann, M. %A Lunze, J. %A Schwarzmann, D. %T Test signal generation for service diagnosis based on local structural properties %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 55-65 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a3/ %G en %F IJAMCS_2012_22_1_a3
Ungermann, M.; Lunze, J.; Schwarzmann, D. Test signal generation for service diagnosis based on local structural properties. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 1, pp. 55-65. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a3/
[1] Bayoudh, M., Travé-Massuyès, L. and Olive, X. (2008). Towards active diagnosis of hybrid systems, 19th International Workshop on Principles of Diagnosis, Blue Mountains, Australia, pp. 231-237.
[2] Bayoudh, M., Travé-Massuyès, L. and Olive, X. (2009). Active diagnosis of hybrid systems guided by diagnosability properties, IFAC Safeprocess, Barcelona, Spain, pp. 1498-1503.
[3] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer.
[4] Campbell, S. L. and Nikoukhah, R. (2004). Auxiliary Signal Design for Failure Detection, Princeton University Press, Princeton, NJ.
[5] Clever, S. and Isermann, R. (2008). Model-based fault detection and diagnosis with special input excitation applied to a modern diesel engine, Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 2031-2036.
[6] Dulmage, A. L. and Mendelsohn, N. S. (1958). Coverings of bipartite graphs, Canadian Journal of Mathematics 10(4): 516-534.
[7] Krysander, M., Åslund, J. and Nyberg, M. (2008). An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics 38(1): 197-206, DOI: 10.1109/TSMCA.2007.909555.
[8] Laursen, M., Blanke, M. and Düştegör, D. (2008). Fault diagnosis of a water for injection system using enhanced structural isolation, International Journal of Applied Mathematics and Computer Science 18(4): 593-603, DOI: 10.2478/v10006-008-0052-5.
[9] Niemann, H. and Poulsen, N. K. (2005). Active fault diagnosis in closed-loop systems, Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, DOI: 10.3182/20050703-6-CZ-1902.01877.
[10] Riggins, R. N. and Ribbens, W. B. (1997). Designed inputs for detection and isolation of failures in the state transition matrices of dynamic systems, IEEE Transactions on Control Systems Technology 5(2): 149-162.
[11] Ungermann, M., Lunze, J. and Schwarzmann, D. (2010a). Model-based test signal generation for service diagnosis of automotive systems, Advances in Automotive Control, Munich, Germany, DOI: 10.3182/20100712-3-DE-2013.00029.
[12] Ungermann, M., Lunze, J. and Schwarzmann, D. (2010b). Service diagnosis utilizing the dependencies between the system structure and the operating points, Conference on Control and Fault-Tolerant Systems, Nice, France, pp. 873-878.
[13] Zhang, X. J. (1989). Auxiliary Signal Design in Fault Detection and Diagnosis, Springer, Heidelberg.