Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_1_a15, author = {Yetendje, A. and Seron, M. M. and De Don\'a, J. A.}, title = {Robust multisensor fault tolerant model-following {MPC} design for constrained systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {211--223}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a15/} }
TY - JOUR AU - Yetendje, A. AU - Seron, M. M. AU - De Doná, J. A. TI - Robust multisensor fault tolerant model-following MPC design for constrained systems JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 211 EP - 223 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a15/ LA - en ID - IJAMCS_2012_22_1_a15 ER -
%0 Journal Article %A Yetendje, A. %A Seron, M. M. %A De Doná, J. A. %T Robust multisensor fault tolerant model-following MPC design for constrained systems %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 211-223 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a15/ %G en %F IJAMCS_2012_22_1_a15
Yetendje, A.; Seron, M. M.; De Doná, J. A. Robust multisensor fault tolerant model-following MPC design for constrained systems. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 1, pp. 211-223. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a15/
[1] De Doná, J., Seron, M. and Yetendje, A. (2009). Multisensor fusion fault-tolerant control with diagnosis via a set separation principle, Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 7825-7830.
[2] Goodwin, G., Seron, M. and De Doná, J. (2005). Constrained Control and Estimation-An Optimisation Approach, Springer-Verlag, London.
[3] Jemaa, L. B. and Davison, E. (2003). Performance limitations in the robust servomechanism problem for discrete-time LTI systems, IEEE Transactions on Automatic Control 48(8): 1299-1311.
[4] Kofman, E., Haimovich, H. and Seron, M. M. (2007). A systematic method to obtain ultimate bounds for perturbed systems, International Journal of Control 80(2): 167-178.
[5] Larson, E. C., Jr, B. P. and Clark, B. R. (2002). Model-based sensor and actuator fault detection and isolation, Proceedings of the American Control Conference, Anchorage, AK, USA, Vol. 5, pp. 4215-4219.
[6] Maciejowski, J. (1999). Fault-tolerant aspects of MPC, Proceedings of the IEEE Workshop on Model Predictive Control: Techniques and Applications, London, UK, pp. 1/1-1/4.
[7] Maciejowski, J. (2002). Predictive Control with Constraints, Prentice-Hall, Pearson Education Limited, Harlow.
[8] Martínez, J. J. and de Wit, C. C. (2004). Model reference control approach for safe longitudinal control, Proceedings of the 2004 American Control Conference, Boston, MA, USA, Vol. 3, pp. 2757-2762.
[9] Mayne, D. Q., Rakovic, S. V., Findeisen, R. and Allgöwer, F. (2006). Robust output feedback model predictive control of constrained linear systems, Automatica 42(7): 1217-1222.
[10] Mendonça, L., Vieira, S., Sousa, J. and da Costa, J. S. (2006). Fault accommodation using fuzzy predictive control, Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, BC, pp. 1535-1542.
[11] Mhaskar, P. (2006). Robust model predictive control design for fault-tolerant control of process systems, Industrial Engineering Chemistry Research 45(25): 8565-8574.
[12] Mhaskar, P., Gani, A. and Christofides, P. (2006). Fault-tolerant control of nonlinear processes: Performance-based reconfiguration and robustness, International Journal of Robust Nonlinear Control 16(3): 91-111.
[13] Ocampo-Martinez, C. and Puig, V. (2008). Fault-tolerant control model predictive control within the hybrid systems framework: Application to sewer networks, International Journal of Adaptive Control and Signal Processing 23(8): 757-787.
[14] Patwardhan, S., Manuja, S., Narsimhan, S. and Shah, S. (2006). From data to diagnosis and control using generalized orthonormal basis filters, Part II: Model predictive and fault tolerant control, Journal of Process and Control 16(2): 157-175.
[15] Pranatyasto, T. N. and Qin, S. (2001). Sensor validation and process fault diagnosis for FCC units under MPC feedback, Control Engineering Practice 9(8): 877-888.
[16] Rawlings, J. B. and Mayne, D. Q. (2009). Model Predictive Control: Theory and Design, Nob Hill Publishing, Madison, WI.
[17] Seron, M., Zhuo, X., De Doná, J. and Martínez, J. (2008). Multisensor switching control strategy with fault tolerance guarantees, Automatica 44(1): 88-97.
[18] Sheng-Qi, S., Dong, L., Lin, L. and Shu-Sheng, G. (2008). Fault tolerant control for constrained linear systems based on MPC and FDI, International Journal of Information and Systems Sciences 4(4): 512-523.
[19] Sun, S. and Deng, Z. (2008). Distributed optimal fusion steady state Kalman filter for systems with coloured measurement noises, International Journal of Systems Science 36(3): 113-118.
[20] Yetendje, A., De Doná, J. and Seron, M. (2011). Multisensor fusion fault-tolerant control, Automatica 47(7): 1461-1466.
[21] Yetendje, A., Seron, M. and De Doná, J. (2010). Robust MPC design for fault tolerance of constrained multisensor linear systems, Conference on Control and Fault-Tolerant Systems (SysTol' 10), Nice, France, pp. 752-758.
[22] Yetendje, A., Seron, M., De Doná, J. and Martínez, J. J. (2010). Sensor fault-tolerant control of a magnetic levitation system, International Journal of Robust and Nonlinear Control 20(18): 2108-2121.