Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_1_a13, author = {Xu, D. and Jiang, B. and Shi, P.}, title = {Nonlinear actuator fault estimation observer: an inverse system approach via a {T-S} fuzzy model}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {183--196}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a13/} }
TY - JOUR AU - Xu, D. AU - Jiang, B. AU - Shi, P. TI - Nonlinear actuator fault estimation observer: an inverse system approach via a T-S fuzzy model JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 183 EP - 196 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a13/ LA - en ID - IJAMCS_2012_22_1_a13 ER -
%0 Journal Article %A Xu, D. %A Jiang, B. %A Shi, P. %T Nonlinear actuator fault estimation observer: an inverse system approach via a T-S fuzzy model %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 183-196 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a13/ %G en %F IJAMCS_2012_22_1_a13
Xu, D.; Jiang, B.; Shi, P. Nonlinear actuator fault estimation observer: an inverse system approach via a T-S fuzzy model. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 1, pp. 183-196. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a13/
[1] Babuska, R. (1998). Fuzzy Modeling for Control, Kluwer Academic Publishers, Boston, MA.
[2] Boukezzoula, R., Galichet, S. and Folloy, L. (2003). Nonlinear internal model control: Application of inverse model based fuzzy control, IEEE Transactions on Fuzzy Systems 11(6): 814-829.
[3] Boukezzoula, R., Galichet, S. and Foulloy, L. (2007). Fuzzy feedback linearizing controller and its equivalence with the fuzzy nonlinear internal model control structure, International Journal of Applied Mathematics and Computer Science 17(2): 233-248, DOI: 10.2478/v10006-007-0021-4.
[4] Chang, C. and Yeh, Y. (2006). Variance constrained fuzzy control for observer-based T-S fuzzy models with minimizing auxiliary performance index, Journal of Intelligent and Fuzzy Systems 17(1): 59-69.
[5] Chen, J. and Patton, R. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer, Boston, MA.
[6] Chen, W. and Saif, M. (2010). Fuzzy nonlinear unknown input observer design with fault diagnosis applications, Journal of Vibration and Control 16(3): 377-401.
[7] Christophe, C., Cocquempot, V. and Jiang, B. (2002). Link between highgain observer-based residual and parity space one, Proceedings of the American Control Conference, Anchorage, AK, USA, pp. 2100-2105.
[8] Ding, X. and Frank, M. (1993). An adaptive observer-based fault detection schme for nonlinear systems, Proceedings of the 12th IFAC World Congress, Sydney, Australia, pp. 307-312.
[9] Edwards, C., Spurgeon, S. and Patton, R. (2000). Sliding mode observers for fault detection and isolation, Automatica 36(2): 541-553.
[10] Fu, Y., Duan, G. and Song, S. (2004). Design of unknown input observer for linear time-delay systems, International Journal of Control, Automation, and Systems 2(4): 530-535.
[11] Gao, H., Zhao, Y. and Chen, T. (2009). H-infinity fuzzy control of nonlinear systems under unreliable communication links, IEEE Transactions on Fuzzy Systems 17(2): 265-278.
[12] Gao, Z., Jiang, B., Shi, P. and Xu, Y. (2010). Fault accommodation for near space vehicle attitude dynamics via T-S fuzzy models, International Journal of Innovative Computing Information and Control 6(11): 4843-4856.
[13] Gu, Z., Peng, C. and Tian, E. (2010). Reliable control for a class of discrete-time state-delayed nonlinear systems with stochastic actuators failures, ICIC Express Letters pp. 2475-2480.
[14] Guan, Y. and Saif, M. (1991). Novel approach to the design of unknown input observers, IEEE Transactions on Automatic Control 36(5): 632-635.
[15] Guo, Y., Jiang, B. and Shi, P. (2010). Delay-dependent adaptive reconfiguration control in the presence of input saturation and actuator faults, International Journal of Innovative Computing, Information and Control 6(4): 1873-1882.
[16] Isermann, R. (2005). Model-based fault detection and diagnosis status and application, Annual Reviews in Control 29(1): 71-85.
[17] Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin.
[18] Jiang, B., Staroswiecki, M. and Cocquempot, V. (2001). Fault diagnosis for a class of nonlinear systems with unknown paramenters, Proceedings of the 4th IFAC Workshop on Online Fault Detection and Supervision in the Chemical Process Industries, Seoul, South Korea, pp. 181-186.
[19] Jiang, B., Staroswiecki, M. and Cocquempot, V. (2006). Fault accommodation for nonlinear dynamic systems, IEEE Transactions on Automatic Control 51(9): 1805-1809.
[20] Jiang, B., Zhang, K. and Shi, P. (2010). Less conservative criteria for fault accommodation of time-varying delay systems using adaptive fault diagnosis observer, International Journal of Adaptive Control and Signal Processing 24(4): 322-334.
[21] Kabore, R., Othman, S.,Mckenna, T. and Hammouri, H. (2000). Observer-based fault diagnosis for a class of nonlinear systems-application to a free radical copolymerization reaction, International Journal of Control 73(9): 787-803.
[22] Kabore, R. and Wang, H. (2001). Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems, IEEE Transactions on Automatic Control 46(11): 1805-1810.
[23] Lendek, Z., Guerra, T., Babuska, R. and Schutter, B. (2010a). Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models, Springer, Berlin.
[24] Lendek, Z., Lauberb, J. and Guerra, T. (2010b). Adaptive observers for T-S fuzzy systems with unknown polynomial inputs, Fuzzy Sets and Systems 16(1): 2043-2065.
[25] Nguang, S. and Shi, P. (2003). H-infinity fuzzy output feedback control design for nonlinear systems: An LMI approach, IEEE Transactions on Fuzzy Systems 11(3): 331-340.
[26] Nguang, S., Shi, P. and Ding, X. (2007). Fault detection for uncertain fuzzy systems: An LMI approach, IEEE Transactions on Fuzzy Systems 15(6): 1251-1262.
[27] Pang, H. and Tang, G. (2010). Global robust optimal sliding mode control for a class of nonlinear systems with uncertainties, ICIC Express Letters 4(6): 2501-2508.
[28] Patton, R., Toribiot, C. and Simanit, S. (2001). Robust fault diagnosis in a chemical process using multiple-model approach, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 149-154.
[29] Persis, C. and Isidori, A. (2001). A geometric approach to nonlinear fault detection and isolation, IEEE Transactions on Automatic Control 46(6): 853-865.
[30] Polycarpou, M. (2001). Fault accommodation of a class of multivariable nonlinear dynamical systems using learing approach, IEEE Transactions on Automatic Control 46(5): 736-742.
[31] Seliger, R. and Frank, M. (1991). Fault diagnosis by disturbance decoupled nonlinear observers, Proceedings of the 30th IEEE Control Decision Conference, Brighton, UK, pp. 2248-2253.
[32] Shumsky, A. (2007). Redundancy relations for fault diagnosis in nonlinear uncertain systems, International Journal of Applied Mathematics and Computer Science 17(4): 477-489, DOI: 10.2478/v10006-007-0040-1.
[33] Staroswiecki, M. and Gehin, A. (2001). From control to supervision, Annual Reviews in Control 25(1): 1-11.
[34] Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics-Part B 17(2): 116-132.
[35] Tanaka, K. and Wang, H. (2001). Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach, John Wiley and Sons, New York, NY.
[36] Vachtsevanos, G., Lewis, F. and Roemer, F. (2006). Intelligent Fault Diagnosis and Prognosis for Engineering Systems, John Wiley and Sons Ltd., Hoboken, NJ.
[37] Wu, L., Su, X., Shi, P. and Qiu, J. (2011). Model approximation for discrete-time state-delay systems in the T-S fuzzy framework, IEEE Transactions on Fuzzy Systems 19(2): 366-378.
[38] Xie, X., Zhou, D. and Jin, Y. (1999). Strong tracking filter based adaptive generic model control, Journal of Process Control 9(4): 337-350.
[39] Xu, Y., Jiang, B., Tao, G. and Gao, Z. (2011a). Fault accommodation for near space hypersonic vehicle with actuator fault, International Journal of Innovative Computing, Information and Control 7(5): 2187-2200.
[40] Xu, Y., Jiang, B., Tao, G. and Gao, Z. (2011b). Fault tolerant control for a class of nonlinear systems with application to near space vehicle, Circuits, Systems, and Signal Processing 30(3): 655-672.
[41] Yan, X. and Edwards, C. (2007). Nonlinear robust fault reconstruction and estimation using a sliding mode observer, Automatica 43(9): 1605-1614.
[42] Yang, Q. (2004). Model-based and Data Driven Fault Diagnosis Methods with Applications to Process Monitoring, Ph.D. thesis, Case Western Reserve University, Cleveland, OH.
[43] Zhang, K. and Jiang, B. (2010). Dynamic output feedback fault tolerant controller design for Takagi-Sugeno fuzzy systems with actuator faults, IEEE Transactions on Fuzzy Systems 18(1): 194-201.
[44] Zhang, K., Jiang, B. and Shi, P. (2009). Fast fault estimation and accommodation for dynamical systems, IET Control Theory and Applications 3(2): 337-350.
[45] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(1): 229-252.
[46] Zhou, S., Lam, J. and Zheng, W. (2007). Control design for fuzzy systems based on relaxed nonquadratic stability and H-infinity performance conditions, IEEE Transactions on Fuzzy Systems 15(2): 188-199.