Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_1_a12, author = {G\'asp\'ar, P. and Szab\'o, Z. and Bokor, J.}, title = {LPV design of fault-tolerant control for road vehicles}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {173--182}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a12/} }
TY - JOUR AU - Gáspár, P. AU - Szabó, Z. AU - Bokor, J. TI - LPV design of fault-tolerant control for road vehicles JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 173 EP - 182 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a12/ LA - en ID - IJAMCS_2012_22_1_a12 ER -
%0 Journal Article %A Gáspár, P. %A Szabó, Z. %A Bokor, J. %T LPV design of fault-tolerant control for road vehicles %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 173-182 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a12/ %G en %F IJAMCS_2012_22_1_a12
Gáspár, P.; Szabó, Z.; Bokor, J. LPV design of fault-tolerant control for road vehicles. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 1, pp. 173-182. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a12/
[1] Balas, G., Bokor, J. and Szabo, Z. (2003). Invariant subspaces for LPV systems and their applications, IEEE Transactions on Automatic Control 48(11): 2065-2069.
[2] Bokor, J. and Balas, G. (2004). Detection filter design for LPV systems-A geometric approach, Automatica 40(3): 511-518.
[3] Bokor, J. and Balas, G. (2005). Linear parameter varying systems: A geometric theory and applications, 16th IFAC World Congress, Prague, Czech Republic, pp. 1-11.
[4] Chen, J. and Patton, R. J. (1999). Robust Model-based Fault Diagnosis for Dynamic Systems, Kluwer Academic, Boston, MA.
[5] de Wit, C. C., Tsiotras, P., Claeys, X., Yi, J. and Horowitz, R. (2003). Friction tire/road modelling, estimation and optimal braking control, in R. Johansson and A. Rantzer (Eds.) Nonlinear and Hybrid Systems in Automotive Control, Lecture Notes in Control and Information Science, Springer-Verlag, London, pp. 125-146.
[6] Edelmayer, A., Bokor, J., Szabo, Z. and Szigeti, F. (2004). Input reconstruction by means of system inversion: A geometric approach to fault detection and isolation in nonlinear systems, International Journal of Applied Mathematics and Computer Science 14(2): 189-199.
[7] Fischer, D. and Isermann, R. (2004). Mechatronic semi-active and active vehicle suspensions, Control Engineering Practice 12(11): 1353-1367.
[8] Gertler, J. J. (1998). Fault Detection and Diagnosis in Engineering Systems, Marcel and Dekker, New York, NY.
[9] Gillespie, T. (1992). Fundamentals of Vehicle Dynamics, Society of Automotive Engineers Inc., Warrendale, PA.
[10] Gordon, T., Howell, M. and Brandao, F. (2003). Integrated control methodologies for road vehicles, Vehicle System Dynamics 40(1-3): 157-190.
[11] Grenaille, S., Henry, D. and Zolghadri, A. (2008). A method for designing fault diagnosis filters for LPV polytopic systems, Journal of Control Science and Engineering, Article ID 231697.
[12] Gáspár, P., Szabo, Z. and Bokor, J. (2010). Brake control using a prediction method to reduce rollover risk, International Journal of Vehicle Autonomous Systems 8(2/3): 126-145.
[13] Gáspár, P., Szászi, I. and Bokor, J. (2003a). Active suspension design using linear parameter varying control, International Journal of Vehicle Autonomous Systems 1(2): 206-221.
[14] Gáspár, P., Szászi, I. and Bokor, J. (2003b). The design of a combined control structure to prevent the rollover of heavy vehicles, European Journal of Control 10(2): 1-15.
[15] Hencey, B. and Alleyne, A. (2010). A robust controller interpolation design technique, IEEE Transactions on Control Systems Technology 18(1): 1-10.
[16] Henry, D. and Zolghadri, A. (2004). Robust fault diagnosis in uncertain linear parameter-varying systems, Proceedings of the IEEE International Conference on Systems, Man Cybernetics, The Hague, The Netherlands, pp. 5165-5170.
[17] Kanev, S. and Verhaegen, M. (2000). Controller reconfiguration for non-linear systems, Control Engineering Practice 8(11): 1223-1235.
[18] Lu, J. and Filev, D. (2009). Multi-loop interactive control motivated by driver-in-the-loop vehicle dynamics controls: The framework, Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, pp. 3569-3574.
[19] Muenchhof, M., Beck, M. and Isermann, R. (2009). Fault tolerant actuators and drives structures, fault detection principles and applications, Annual Reviews in Control 33(2): 136-148.
[20] Packard, A. and Balas, G. (1997). Theory and application of linear parameter varying control techniques, Proceedings of the American Control Conference, Albuquerque, NM, USA.
[21] Palkovics, L. and Fries, A. (2001). Intelligent electronic systems in commercial vehicles for enhanced traffic safety, Vehicle System Dynamics 35(4-5): 227-289.
[22] Rank, M. and Niemann, H. (1999). Norm based design of fault detectors, International Journal of Control 72(9): 773-783.
[23] Rodrigues, M., Theilliol, D., Aberkane, S. and Sauter, D. (2007). Fault tolerant control design for polytopic LPV systems, International Journal of Applied Mathematics and Computer Science 17(1): 27-37, DOI: 10.2478/v10006-007-0004-5.
[24] Scherer, C. W. (2001). LPV control and full block multipliers, Automatica 27(3): 325-485.
[25] Shumsky, A. and Zhirabok, A. (2006). Nonlinear diagnostic filter design: Algebraic and geometric points of view, International Journal of Applied Mathematics and Computer Science 16(1): 115-127.
[26] Song, C., Uchanski, M. and Hedrick, J. (2002). Vehicle speed estimation using accelerometer and wheel speed measurements, Proceedings of the SAE Automotive Transportation Technology, Paris, France, pp. 1-8.
[27] Theilliol, D., Join, C. and Zhang, Y. (2008). Actuator fault tolerant control design based on a reconfigurable reference input, International Journal of Applied Mathematics and Computer Science 18(4): 553-560, DOI: 10.2478/v10006-008-0048-1.
[28] Trachtler, A. (2004). Integrated vehicle dynamics control using active brake, steering and suspension systems, International Journal of Vehicle Design 36(1): 1-12.
[29] Varga, A. (2008). On computing nullspace bases-A fault detection perspective, Proceedings of the 17th World Congress of the International Federation of Automatic Control, Seoul, Korea, pp. 6296-6300.
[30] Wu, F. (2001). A generalized LPV system analysis and control synthesis framework, International Journal of Control 74(7): 745-759.
[31] Wu, F., Yang, X., Packard, A. and Becker, G. (1996). Induced L2 norm controller for LPV systems with bounded parameter variation rates, International Journal of Robust and Nonlinear Control 6(9-10): 983-988.
[32] Yu, F., Li, D. and Crolla, D. (2008). Integrated vehicle dynamics control: State-of-the art review, IEEE Vehicle Power and Propulsion Conference, Harbin, China, pp. 1-6.
[33] Zin, A., Sename, O., Gáspár, P. and Bokor, J. (2006). An LPV/Hinf active suspension control for global chassis technology: Design and performance analysis, Vehicle System Dynamics 46(10): 889-912.