Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2012_22_1_a11, author = {Montes de Oca, S. and Puig, V. and Witczak, M. and Dziekan, {\L}.}, title = {Fault-tolerant control strategy for actuator faults using {LPV} techniques: application to a two degree of freedom helicopter}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {161--171}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a11/} }
TY - JOUR AU - Montes de Oca, S. AU - Puig, V. AU - Witczak, M. AU - Dziekan, Ł. TI - Fault-tolerant control strategy for actuator faults using LPV techniques: application to a two degree of freedom helicopter JO - International Journal of Applied Mathematics and Computer Science PY - 2012 SP - 161 EP - 171 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a11/ LA - en ID - IJAMCS_2012_22_1_a11 ER -
%0 Journal Article %A Montes de Oca, S. %A Puig, V. %A Witczak, M. %A Dziekan, Ł. %T Fault-tolerant control strategy for actuator faults using LPV techniques: application to a two degree of freedom helicopter %J International Journal of Applied Mathematics and Computer Science %D 2012 %P 161-171 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a11/ %G en %F IJAMCS_2012_22_1_a11
Montes de Oca, S.; Puig, V.; Witczak, M.; Dziekan, Ł. Fault-tolerant control strategy for actuator faults using LPV techniques: application to a two degree of freedom helicopter. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) no. 1, pp. 161-171. http://geodesic.mathdoc.fr/item/IJAMCS_2012_22_1_a11/
[1] Apkarian, P., Gahinet, P. and Becker, G. (1995). Self-scheduled H-infinity control of linear parameter-varying systems: A design example, Automatica 31(9): 1251-1261.
[2] Banerjee, A., Arkun, Y., Pearson, R. and Ogunnaike, B. (1995). H-infinity control of nonlinear processes using multiple linear models, Proceedings of the European Control Conference, Rome, Italy, pp. 2671-2676.
[3] Biannic, J. M. (1996). Commande Robuste des Systèmes à Paramètres Variables. Application en Aéronautique, Ph.D. thesis, Study and Research Centre of Toulouse, DERA Department, Toulouse.
[4] Blanke, M., Izadi-Zamanabadi, R., Bogh, S. A. and Lunau, C. P. (1997). Fault-tolerant control systems-A holistic view, Control Engineering Practice 5(5): 693-702.
[5] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer-Verlag, Berlin/Heidelberg.
[6] Chen, J., Patton, R. J. and Chen, Z. (1998). An LMI approach to fault-tolerant control of uncertain systems, IEEE International Symposium on Intelligent Control, Gaithersburg, MD, USA, Vol. 1, pp. 175-180.
[7] Chilali, M. and Gahinet, P. (1996). H-infinity design with pole placement constraints: An LMI approach, IEEE Transactions on Automatic Control 41(3): 358-367.
[8] Dziekan, Ł. (2011). Neuro-Fuzzy-Based Takagi-Sugeno Modelling in Fault-Tolerant Control, Lecture Notes in Control and Computer Science, Vol. 16, University of Zielona Góra Press, Zielona Góra.
[9] Fee (1998). Twin Rotor MIMO System Advanced Teaching Manual 1 (33-007-4M5).
[10] Franklin, G. F., Powell, J. D. and Workman, M. L. (1997). Digital Control of Dynamic Systems, 3rd Edn., Addison Wesley Longman, London.
[11] Ghersin, A. S. and Sanchez-Pena, R. S. (2002). LPV control of a 6-DOF vehicle, IEEE Transactions on Control Systems Technology 10(6): 883-887.
[12] Hallouzi, R., Verdult, V., Babuska, R. and Verhaegen, M. (2005). Fault detection and identification of actuator faults using linear parameter varying models, 16th IFAC Triennial World Congress, Prague, Czech Republic, pp. 119-124.
[13] Henrion, L. R. D., Bernussou, J. and Vary, F. (2005). LPV modeling of a turbofan engine, Preprints of the 16th World Congress of the International Federation of Automatic Control, Prague, Czech Republic, pp. 526-531.
[14] Hui, S. and ˙Zak, S. H. (2005). Observer design for systems with unknown inputs, International Journal of Applied Mathematics and Computer Science 15(4): 101-117.
[15] Leith, D. and Leithead, W. (1999). Survey of gain scheduling analysis design, International Journal of Control, 73(11): 1001-1025.
[16] Liang, Y., Liaw, D. and Lee, T. (2000). Reliable control of nonlinear systems, IEEE Transactions on Automatic Control 45(4): 706-710.
[17] Lunze, J. (2006). Control reconfiguration after actuator failures: The generalised virtual actuator, Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Beijing, China, pp. 1309-1314.
[18] Maki, M., Jiang, J. and Hagino, K. (2004). A stability guaranteed active fault-tolerant control system against actuator failures, International Journal of Robust and Nonlinear Control 14(12): 1061-1077.
[19] Murray-Smith, R. and Johansen, T. A. (1997). Multiple Model Approaches to Modelling and Control, Taylor and Francis, London.
[20] Patton, R. J. (1997). Fault-tolerant control systems: The 1997 situation, Proceedings of the IFAC Symposium: SAFEPROCESS' 97, Hull, UK, Vol. 2, pp. 1033-1055.
[21] Qu, Z., Ihlefeld, C. M., Yufang, J. and Saengdeejing, A. (2003). Robust fault-tolerant self-recovering control of nonlinear uncertain systems, Automatica 39(10): 1763-1771.
[22] Richter, J. H., Schlage, T. and Lunze, J. (2007). Control reconfiguration of a thermofluid process by means of a virtual actuator, IET Proceedings on Control Theory and Applications 1(6): 1606-1620.
[23] Rodrigues, M., Theilliol, D., Aberkane, S. and Sauter, D. (2007). Fault tolerant control design for polytopic LPV systems, International Journal of Applied Mathematics and Computer Science 17(1): 27-37, DOI: 10.2478/v10006-007-0004-5.
[24] Rodrigues, M., Theilliol, D., Medina, M. A. and Sauter, D. (2008). A fault detection and isolation scheme for industrial systems based on multiple operating models, Control Engineering Practice 16(2): 225-239.
[25] Rodrigues, M., Theilliol, D. and Sauter, D. (2005). Design of an active fault tolerant control and polytopic unknown input observer for systems described by a multi-model representation, 44th IEEE Conference on Decision and Control/European Control Conference ECC, Sevilla, Spain, pp. 3816-3820.
[26] Wan, Z. and Kothare, M. V. (2003). Efficient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems, Proceedings of the American Control Conference, Denver, CO, USA, Vol. 1 (4-6), pp. 489-494.
[27] Witczak, M., Dziekan, L., Puig, V. and Korbicz, J. (2007). An integrated design strategy for fault identification and fault-tolerant control for Takagi-Sugeno fuzzy systems, Preprints of the 17th World Congress of the International Federation of Automatic Control, Seoul, Korea, pp. 7387-7392.
[28] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229-252.
[29] Zhang, Y.M., Jiang, J., Yang, Z. and Hussain, D.M.A. (2005). Managing performance degradation in fault tolerant control systems, Preprints of the 16th IFAC Triennial World Congress, Prague, Czech Republic, pp. 424-429.