Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_4_a12, author = {Arang\'u, M. and Salido, M. A.}, title = {A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {733--744}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a12/} }
TY - JOUR AU - Arangú, M. AU - Salido, M. A. TI - A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 733 EP - 744 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a12/ LA - en ID - IJAMCS_2011_21_4_a12 ER -
%0 Journal Article %A Arangú, M. %A Salido, M. A. %T A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 733-744 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a12/ %G en %F IJAMCS_2011_21_4_a12
Arangú, M.; Salido, M. A. A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 4, pp. 733-744. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_4_a12/
[1] Arangú, M., Salido, M. A. and Barber, F. (2010). AC2001-OP: An arc-consistency algorithm for constraint satisfaction problems, 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2010, C´ordoba, Spain, pp. 219-228.
[2] Barták, R. (1999). Constraint programming: In pursuit of the Holy Grail, Proceedings of the Week of Doctoral Students (WDS99), Prague, Czech Republic, Part IV, pp. 555-561.
[3] Barták, R. (2001). Theory and practice of constraint propagation, Proceedings of the 3rd Workshop on Constraint Programming in Decision and Control, Gliwice, Poland, pp. 7-14.
[4] Barták, R. (2005). Constraint propagation and backtracking-based search, First International Summer School on Constraint Programming, Acquafredda di Maratea, Italy, pp. 1-43.
[5] Barták, R., Salido, M. A. and Rossi, F. (2010). Constraint satisfaction techniques in planning and scheduling, Journal of Intelligent Manufacturing 21: 5-15.
[6] Bessiere, C. (1994). Arc-consistency and arc-consistency again, Artificial Intelligence 65: 179-190.
[7] Bessiere, C. (2006). Constraint propagation, Technical report, CNRS/University of Montpellier, Montpellier.
[8] Bessiere, C. and Cordier, M. (1993). Arc-consistency and arc-consistency again, Proceedings of the 11th National Conference on Artificial Intelligence (AAAI-93), Washington, DC, USA, pp. 108-113.
[9] Bessiere, C., Freuder, E. and Régin, J. C. (1999). Using constraint metaknowledge to reduce arc consistency computation, Artificial Intelligence 107: 125-148.
[10] Bessiere, C., Régin, J. C., Yap, R. and Zhang, Y. (2005). An optimal coarse-grained arc-consistency algorithm, Artificial Intelligence 165: 165-185.
[11] Brdyś, M. A. and Littler, J. J. (2002). Fuzzy logic gain scheduling for non-linear servo tracking, International Journal of Applied Mathematics and Computer Science 12(2): 209-219.
[12] Chmeiss, A. and Jegou, P. (1998). Efficient path-consistency propagation, International Journal on Artificial Intelligence Tools 7: 121-142.
[13] Dechter, R. (2003). Constraint Processing, Morgan Kaufmann, San Francisco, CA.
[14] Deng, J., Becerra, V. M. and Stobart, R. (2009). Input constraints handling in an MPC/feedback linearization scheme, International Journal of Applied Mathematics and Computer Science 19(2): 219-232, DOI: 10.2478/v10006-009-0018-2.
[15] Hentenryck, P. V., Deville, Y. and Teng, C. M. (1992). A generic arc-consistency algorithm and its specializations, Artificial Intelligence 57: 291-321.
[16] Królikowski, A. and Jerzy, D. (2001). Self-tuning generalized predictive control with input constraints, International Journal of Applied Mathematics and Computer Science 11(2): 459-479.
[17] Mackworth, A. K. (1977). Consistency in networks of relations, Artificial Intelligence 8: 99-118.
[18] Mehta, D. (2008). Reducing checks and revisions in the coarsegrained arc consistency algorithms, Constraint Programming Letters 2: 37-53.
[19] Mesghouni, K., Hammadi, S. and Borne, P. (2004). Evolutionary algorithms for job-shop scheduling, International Journal of Applied Mathematics and Computer Science 14(1): 91-103.
[20] Mohr, R. and Henderson, T. (1986). Arc and path consistency revised, Artificial Intelligence 28: 225-233.
[21] Perlin, M. (1992). Arc consistency for factorable relations, Artificial Intelligence 53: 329-342.
[22] Rossi, F., Van Beek, P. and Walsh, T. (2008). Handbook of Constraint Programming, Elsevier Science and Technology, Amsterdam.
[23] Ruttkay, Z. (1998). Constraint satisfaction-A survey, CWI Quarterly 11(23): 123-162.
[24] Sikora, B. (2003). On the constrained controllability of dynamical systems with multiple delays in the state, International Journal of Applied Mathematics and Computer Science 13(4): 469-479.
[25] Tsang, E. (1995). Foundations of Constraint Satisfaction, Academic Press, London/San Diego, CA.
[26] van Dongen, M., Dieker, A. and Sapozhnikov, A. (2008). The expected value and the variance of the checks required by revision algorithms, Constraint Programming Letters 2: 55-77.