Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_3_a2, author = {Bonfe, M. and Castaldi, P. and Mimmo, N. and Simani, S.}, title = {Active fault tolerant control of nonlinear systems: the cart-pole example}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {441--455}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a2/} }
TY - JOUR AU - Bonfe, M. AU - Castaldi, P. AU - Mimmo, N. AU - Simani, S. TI - Active fault tolerant control of nonlinear systems: the cart-pole example JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 441 EP - 455 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a2/ LA - en ID - IJAMCS_2011_21_3_a2 ER -
%0 Journal Article %A Bonfe, M. %A Castaldi, P. %A Mimmo, N. %A Simani, S. %T Active fault tolerant control of nonlinear systems: the cart-pole example %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 441-455 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a2/ %G en %F IJAMCS_2011_21_3_a2
Bonfe, M.; Castaldi, P.; Mimmo, N.; Simani, S. Active fault tolerant control of nonlinear systems: the cart-pole example. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 441-455. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a2/
[1] Baldi, P., Castaldi, P. and Simani, S. (2010). Fault diagnosis and control reconfiguration in Earth satellite model engines, Proceedings of the 9th UKACC International Conference on Control (CONTROL 2010), Coventry, UK, pp. 1-6.
[2] Benini, B., Castaldi, P. and Simani, S. (2009). Fault Diagnosis for Aircraft System Models: An Introduction from Fault Detection to Fault Tolerance, 1st Edn., VDM Verlag Dr. Muller, Saarbrucken.
[3] Bertoni, G., Bertozzi, N., Castaldi, P. and Simani, S. (2010a). A nonlinear guidance and active fault tolerant control system for a fixed wing unmanned aerial vehicle, Proceedings of the 2010 American Control Conference-ACC2010, Baltimore, MD, USA, pp. 1-6.
[4] Bertoni, G., Castaldi, P., Mimmo, N. and Simani, S. (2010b). Active fault tolerant control system for a high accuracy planet-image satellite, Proceedings of the 18th IFAC Symposium on Automatic Control in Aerospace-ACA2010, Nara, Japan, pp. 1-6.
[5] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer-Verlag, Berlin.
[6] Bonfè, M., Castaldi, P., Geri, W. and Simani, S. (2007). Nonlinear actuator fault detection and isolation for a general aviation aircraft, Space Technology-Space Engineering, Telecommunication, Systems Engineering and Control 27(2-3): 107-113.
[7] Castaldi, P., Geri, W., Bonfè, M., Simani, S. and Benini, M. (2010). Design of residual generators and adaptive filters for the FDI of aircraft model sensors, Control Engineering Practice 18(5): 449-495, DOI:10.1016/j.conengprac.2008.11.006.
[8] Chen, J. and Patton, R. J. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publishers, Norwell, MA.
[9] De Persis, C. and Isidori, A. (2001). A geometric approach to non-linear fault detection and isolation, IEEE Transactions on Automatic Control 45(6): 853-865.
[10] Ding, S. X. (2008). Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, 1st Edn., Springer, Berlin/Heidelberg.
[11] Edwards, C. (2004). A practical method for the design of sliding mode controllers using linear matrix inequalities, Automatica 40(10): 1761-1769.
[12] Edwards, C., Lombaerts, T. and Smaili, H. (Eds.) (2010). Fault Tolerant Flight Control: A Benchmark Challenge, 1st Edn., Lecture Notes in Control and Information Sciences, Vol. 399, Springer, Heidelberg/Berlin.
[13] Edwards, C. and Spurgeon, S. (1998). Sliding Mode Control: Theory and Applications, 1st Edn., Taylor Francis, London.
[14] Ioannou, P. and Sun, J. (1996). Robust Adaptive Control, PTR Prentice-Hall, Upper Saddle River, NJ.
[15] Isermann, R. (2005). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, 1st Edn., Springer-Verlag, Heidelberg/Berlin,.
[16] Kaboré, P., Othman, S.,McKenna, T. and Hammouri, H. (2000). An observer-based fault diagnosis for a class of nonlinear systems-Application to a free radical copolymerization reaction, International Journal of Control 73(9): 787-803.
[17] Kaboré, P. and Wang, H. (2001). Design of fault diagnosis filters and fault tolerant control for a class of nonlinear systems, IEEE Transactions on Automatic Control 46(11): 1805-1810.
[18] Korbicz, J., Koscielny, J. M., Kowalczuk, Z. and Cholewa, W. (Eds.) (2004). Fault Diagnosis: Models, Artificial Intelligence, Applications, 1st Edn., Springer-Verlag, Heidelberg/Berlin.
[19] Li, H., Zhao, Q. and Yang, Z. (2007). Reliability modeling of fault tolerant control systems, International Journal of Applied Mathematics and Computer Science 17(4): 491-504, DOI: 10.2478/v10006-007-0041-0.
[20] Mahmoud, M., Jiang, J. and Zhang, Y. (2003). Active Fault Tolerant Control Systems, Springer-Verlag, Heidelberg/Berlin.
[21] Marcos, A., Ganguli, S. and Balas, G. J. (2005). An application of H infinity fault detection and isolation to a transport aircraft, Control Engineering Practice 13(1): 105-119.
[22] Noura, H., Theilliol, D., Ponsart, J.-C. and Chamseddine, A. (2009). Fault-tolerant Control Systems: Design and Practical Applications, 1st Edn. Advances in Industrial Control, Vol. 1, Springer, London.
[23] Rodrigues, M., Theilliol, D., Aberkane, S. and Sauter, D. (2007). Fault tolerant control design for polytopic LPV systems, International Journal of Applied Mathematics and Computer Science 17(1): 27-37, DOI: 10.2478/v10006-007-0004-5.
[24] Simani, S., Fantuzzi, C. and Patton, R. J. (2003). Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques, Advances in Industrial Control, Vol. 1, Springer-Verlag, London.
[25] Slotine, J.-J. and Sastry, S. (1983). Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators, International Journal of Control 38(2): 465-492.
[26] Su, C.-Y. and Stepanenko, Y. (1994). Adaptive sliding mode control of robot manipulators: General sliding manifold case, Automatica 30(9): 1497-1500.
[27] Theilliol, D., Join, C. and Zhang, Y. (2008). Actuator fault tolerant control design based on a reconfigurable reference input, International Journal of Applied Mathematics and Computer Science 18(4): 553-560, DOI: 10.2478/v10006-008-0048-1.
[28] Utkin, V. (1977). Variable structure systems with sliding mode, IEEE Transactions on Automatic Control AC-22(2): 212-222.
[29] Utkin, V. (1992). Sliding Modes in Control Optimization, Springer-Verlag, Heidelberg/Berlin.
[30] Utkin, V. I., Guldner, J. and Shi, J. (1999). Sliding Mode Control in Electromechanical Systems, 1st Edn., Series in Systems Control Engineering, Taylor Francis, London.
[31] Witczak, M. (2007). Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems: From Analytical to Soft Computing Approaches, 1st Edn., Lecture Notes in Control Information Sciences, Vol. 354, Springer-Verlag, Berlin/Heidelberg.
[32] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229-252.