Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_3_a12, author = {Shin, Y. J. and Park, C. H.}, title = {Analysis of correlation based dimension reduction methods}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {549--558}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a12/} }
TY - JOUR AU - Shin, Y. J. AU - Park, C. H. TI - Analysis of correlation based dimension reduction methods JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 549 EP - 558 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a12/ LA - en ID - IJAMCS_2011_21_3_a12 ER -
%0 Journal Article %A Shin, Y. J. %A Park, C. H. %T Analysis of correlation based dimension reduction methods %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 549-558 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a12/ %G en %F IJAMCS_2011_21_3_a12
Shin, Y. J.; Park, C. H. Analysis of correlation based dimension reduction methods. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 549-558. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a12/
[1] Anton, H. and Busby, R. (2003). Contemporary Linear Algebra, John Wiley and Sons, Denver, CO.
[2] Baudat, G. and Anouar, F. (2000). Generalized discriminant analysis using a kernel approach, Neural Computation 12(10): 2385-2404.
[3] Billings, S. and Lee, K. (2002). Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm, Neural Networks 15(2): 263-270.
[4] Chen, L., Liao, H., M. Ko, Lin, J. and Yu, G. (2000). A new LDA-based face recognition system which can solve the small sample size problem, Pattern Recognition 33(10): 1713-1726.
[5] Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification, Wiley Interscience, New York, NY.
[6] Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, 2nd Edn., Academic Press, San Diego, CA.
[7] Fukunaga, K. and Mantock, J. (1983). Nonparametric discriminant analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 5(6): 671-678.
[8] Garthwaite, P. (1994). An interpretation of partial least squares, Journal of the American Statistical Society 89(425): 122-127.
[9] He, X. and Niyogi, P. (2003). Locality preserving projections, Proceedings of the Advances in Neural Information Processing Systems Conference, Vancouver, Canada, pp. 153-160.
[10] Hotelling, H. (1936). Relations between two sets of variates, Biometrika 28(3): 321-377.
[11] Hou, C., Nie, F., Zhang, C. and Wu, Y. (2009). Learning an orthogonal and smooth subspace for image classification, IEEE Signal Processing Letters 16(4): 303-306.
[12] Howland, P. and Park, H. (2004). Generalizing discriminant analysis using the generalized singular value decomposition, IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8): 995-1006.
[13] Jolliffe, I. (1986). Principal Component Analysis, Springer, New York, NY.
[14] Nie, F., Xiang, S. and Zhang, C. (2007). Neighborhood minmax projections, Proceedings of the International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 993-998.
[15] Pardalos, P. and Hansen, P. (2008). Data Mining and Mathematical Programming, CRM Proceedings Lecture Notes, Vol. 45, American Mathematical Society, Montreal.
[16] Park, C. and Park, H. (2008). A comparison of generalized linear discriminant analysis algorithms, Pattern Recognition 41(3): 1083-1097.
[17] Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding, Science 290(5500): 2323-2326.
[18] Sugiyama, M. (2006). Local fisher discriminant analysis for supervised dimensionality reduction, Proceedings of the IEEE International Conference on Machine Learning, Pittsburgh, PA, USA, pp. 905-912.
[19] Sun, Q., Zeng, S., Liu, Y., Heng, P. and Xia, D. (2005). A new method of feature fusion and its application in image recognition, Pattern Recognition 38(12): 2437-2448.
[20] Sun, T. and Chen, S. (2007). Class label versus sample label-based CCA, Applied Mathematics and Computation 185(1): 272-283.
[21] Sun, T., Chen, S., Yang, J. and Shi, P. (2008). A supervised combined feature extraction method for recognition, Procedings of the IEEE International Conference on Data Mining, Pisa, Italy, pp. 1043-1048.
[22] Tenenbaum, J. B., de Silva, V. and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction, Science 290(5500): 2319-2323.
[23] Wegelin, J. (2000). A survey of partial least squares (PLS) methods, with emphasis on the two block case, Technical report, Department of Statistics, University of Washington, Seattle, WA.
[24] Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q. and Lin, S. (2007). Graph embedding and extensions: A general framework for dimensionlity reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1): 40-51.
[25] Yang, J. and Yang, J.-Y. (2003). Why can LDA be performed in PCA transformed space?, Pattern Recognition 36(2): 563-566.
[26] Yang, J., Yang, J., Zhang, D. and Lu, J. (2003). Feature fusion: Parallel strategy vs. serial strategy, Pattern Recognition 36(6): 1369-1381.
[27] Ye, J. (2005). Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems, Journal of Machine Learning Research 6(4): 483-502.
[28] Yu, H. and Yang, J. (2001). A direct LDA algorithm for highdimensional data-with application to face recognition, Pattern Recognition 34(10): 2067-2070.