Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_3_a11, author = {Saeedi, H. and Mollahasani, N. and Mohseni Moghadam, M. and Chuev, G. N.}, title = {An operational {Haar} wavelet method for solving fractional {Volterra} integral equations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {535--547}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a11/} }
TY - JOUR AU - Saeedi, H. AU - Mollahasani, N. AU - Mohseni Moghadam, M. AU - Chuev, G. N. TI - An operational Haar wavelet method for solving fractional Volterra integral equations JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 535 EP - 547 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a11/ LA - en ID - IJAMCS_2011_21_3_a11 ER -
%0 Journal Article %A Saeedi, H. %A Mollahasani, N. %A Mohseni Moghadam, M. %A Chuev, G. N. %T An operational Haar wavelet method for solving fractional Volterra integral equations %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 535-547 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a11/ %G en %F IJAMCS_2011_21_3_a11
Saeedi, H.; Mollahasani, N.; Mohseni Moghadam, M.; Chuev, G. N. An operational Haar wavelet method for solving fractional Volterra integral equations. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 535-547. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a11/
[1] Abdalkhania, J. (1990). Numerical approach to the solution of Abel integral equations of the second kind with nonsmooth solution, Journal of Computational and Applied Mathematics 29(3): 249-255.
[2] Akansu, A. N. and Haddad, R. A. (1981). Multiresolution Signal Decomposition, Academic Press Inc., San Diego, CA.
[3] Bagley, R. L. and Torvik, P. J. (1985). Fractional calculus in the transient analysis of viscoelastically damped structures, American Institute of Aeronautics and Astronautics Journal 23(6): 918-925.
[4] Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics, Journal of Econometrics 73(1): 5- 59.
[5] Baratella, P. and Orsi, A. P. (2004). New approach to the numerical solution of weakly singular Volterra integral equations, Journal of Computational and Applied Mathematics 163(2): 401-418.
[6] Brunner, H. (1984). The numerical solution of integral equations with weakly singular kernels, in D.F. GriMths (Ed.), Numerical Analysis, Lecture Notes in Mathematics, Vol. 1066, Springer, Berlin, pp. 50-71.
[7] Chen, C. F. and Hsiao, C. H. (1997). Haar wavelet method for solving lumped and distributed parameter systems, IEE Proceedings: Control Theory and Applications 144(1): 87-94.
[8] Chena, W., Suna, H., Zhang, X. and Korŏsak, D. (2010). Anomalous diffusion modeling by fractal and fractional derivatives, Computers Mathematics with Applications 59(5): 265-274.
[9] Chiodo, S., Chuev, G. N., Erofeeva, S. E., Fedorov, M. V., Russo, N. and Sicilia, E. (2007). Comparative study of electrostatic solvent response by RISM and PCM methods, International Journal of Quantum Chemistry 107: 265-274.
[10] Chow, T. S. (2005). Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, Physics Letters A 342(1-2): 148-155.
[11] Chuev, G. N., Fedorov, M. V. and Crain, J. (2007). Improved estimates for hydration free energy obtained by the reference interaction site model, Chemical Physics Letters 448: 198-202.
[12] Chuev, G. N., Fedorov, M. V., Chiodo, S., Russo, N. and Sicilia, E. (2008). Hydration of ionic species studied by the reference interaction site model with a repulsive bridge correction, Journal of Computational Chemistry 29(14): 2406-2415.
[13] Chuev, G. N., Chiodo, S., Fedorov, M. V., Russo, N. and Sicilia, E. (2006). Quasilinear RISM-SCF approach for computing solvation free energy of molecular ions, Chemical Physics Letters 418: 485-489.
[14] Dixon, J. (1985). On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non-smooth solution, BIT 25(4): 624-634.
[15] Hsiao, C. H. and Wu, S. P. (2007). Numerical solution of time-varying functional differential equations via Haar wavelets, Applied Mathematics and Computation 188(1): 1049-1058.
[16] Lepik, Ü. and Tamme, E. (2004). Application of the Haar wavelets for solution of linear integral equations, Dynamical Systems and Applications, Proceedings, Antalya, Turkey, pp. 494-507.
[17] Lepik, Ü. (2009). Solving fractional integral equations by the Haar wavelet method, Applied Mathematics and Computation 214(2): 468-478.
[18] Li, C. and Wang, Y. (2009). Numerical algorithm based on Adomian decomposition for fractional differential equations, Computers Mathematics with Applications 57(10): 1672-1681.
[19] Magin, R. L. (2004). Fractional calculus in bioengineering. Part 2, Critical Reviews in Bioengineering 32: 105-193.
[20] Mainardi, F. (1997). Fractional calculus: 'Some basic problems in continuum and statistical mechanics', in A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, NY.
[21] Mandelbrot, B. (1967). Some noises with 1/f spectrum, a bridge between direct current and white noise, IEEE Transactions on Information Theory 13: 289-298
[22] Maleknejad, K. and Mirzaee, F. (2005). Using rationalized Haar wavelet for solving linear integral equations, Applied Mathematics and Computation 160(2): 579-587.
[23] Meral, F. C., Royston, T. J. and Magin, R. (2010). Fractional calculus in viscoelasticity: An experimental study, Communications in Nonlinear Science and Numerical Simulation 15(4): 939-945.
[24] Metzler, R. and Nonnenmacher, T. F. (2003). Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials, International Journal of Plasticity 19(7): 941-959.
[25] Miller, K. and Feldstein, A. (1971). Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM Journal on Mathematical Analysis 2: 242-258.
[26] Miller, K. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, NY.
[27] Pandey, R. K., Singh, O. P. and Singh, V. K. (2009). Efficient algorithms to solve singular integral equations of Abel type, Computers and Mathematics with Applications 57(4): 664-676.
[28] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.
[29] Strang, G. (1989). Wavelets and dilation equations, SIAM Review 31(4): 614-627.
[30] Vainikko, G. and Pedas, A. (1981). The properties of solutions of weakly singular integral equations, Journal of the Australian Mathematical Society, Series B: Applied Mathematics 22: 419-430.
[31] Vetterli, M. and Kovacevic, J. (1995). Wavelets and Subband Coding, Prentice Hall, Englewood Cliffs, NJ.
[32] Yousefi, S. A. (2006). Numerical solution of Abel's integral equation by using Legendre wavelets, Applied Mathematics and Computation 175(1): 574-580.
[33] Zaman, K. B. M. Q. and Yu, J. C. (1995). Power spectral density of subsonic jetnoise, Journal of Sound and Vibration 98(4): 519-537.