An operational Haar wavelet method for solving fractional Volterra integral equations
International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 535-547.

Voir la notice de l'article provenant de la source Library of Science

A Haar wavelet operational matrix is applied to fractional integration, which has not been undertaken before. The Haar wavelet approximating method is used to reduce the fractional Volterra and Abel integral equations to a system of algebraic equations. A global error bound is estimated and some numerical examples with smooth, nonsmooth, and singular solutions are considered to demonstrate the validity and applicability of the developed method.
Keywords: fractional Volterra integral equation, Abel integral equation, fractional calculus, Haar wavelet method, operational matrices
Mots-clés : równanie całkowe, równanie całkowe Abela, rachunek ułamkowy, macierz operacyjna
@article{IJAMCS_2011_21_3_a11,
     author = {Saeedi, H. and Mollahasani, N. and Mohseni Moghadam, M. and Chuev, G. N.},
     title = {An operational {Haar} wavelet method for solving fractional {Volterra} integral equations},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {535--547},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a11/}
}
TY  - JOUR
AU  - Saeedi, H.
AU  - Mollahasani, N.
AU  - Mohseni Moghadam, M.
AU  - Chuev, G. N.
TI  - An operational Haar wavelet method for solving fractional Volterra integral equations
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2011
SP  - 535
EP  - 547
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a11/
LA  - en
ID  - IJAMCS_2011_21_3_a11
ER  - 
%0 Journal Article
%A Saeedi, H.
%A Mollahasani, N.
%A Mohseni Moghadam, M.
%A Chuev, G. N.
%T An operational Haar wavelet method for solving fractional Volterra integral equations
%J International Journal of Applied Mathematics and Computer Science
%D 2011
%P 535-547
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a11/
%G en
%F IJAMCS_2011_21_3_a11
Saeedi, H.; Mollahasani, N.; Mohseni Moghadam, M.; Chuev, G. N. An operational Haar wavelet method for solving fractional Volterra integral equations. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 535-547. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a11/

[1] Abdalkhania, J. (1990). Numerical approach to the solution of Abel integral equations of the second kind with nonsmooth solution, Journal of Computational and Applied Mathematics 29(3): 249-255.

[2] Akansu, A. N. and Haddad, R. A. (1981). Multiresolution Signal Decomposition, Academic Press Inc., San Diego, CA.

[3] Bagley, R. L. and Torvik, P. J. (1985). Fractional calculus in the transient analysis of viscoelastically damped structures, American Institute of Aeronautics and Astronautics Journal 23(6): 918-925.

[4] Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics, Journal of Econometrics 73(1): 5- 59.

[5] Baratella, P. and Orsi, A. P. (2004). New approach to the numerical solution of weakly singular Volterra integral equations, Journal of Computational and Applied Mathematics 163(2): 401-418.

[6] Brunner, H. (1984). The numerical solution of integral equations with weakly singular kernels, in D.F. GriMths (Ed.), Numerical Analysis, Lecture Notes in Mathematics, Vol. 1066, Springer, Berlin, pp. 50-71.

[7] Chen, C. F. and Hsiao, C. H. (1997). Haar wavelet method for solving lumped and distributed parameter systems, IEE Proceedings: Control Theory and Applications 144(1): 87-94.

[8] Chena, W., Suna, H., Zhang, X. and Korŏsak, D. (2010). Anomalous diffusion modeling by fractal and fractional derivatives, Computers Mathematics with Applications 59(5): 265-274.

[9] Chiodo, S., Chuev, G. N., Erofeeva, S. E., Fedorov, M. V., Russo, N. and Sicilia, E. (2007). Comparative study of electrostatic solvent response by RISM and PCM methods, International Journal of Quantum Chemistry 107: 265-274.

[10] Chow, T. S. (2005). Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, Physics Letters A 342(1-2): 148-155.

[11] Chuev, G. N., Fedorov, M. V. and Crain, J. (2007). Improved estimates for hydration free energy obtained by the reference interaction site model, Chemical Physics Letters 448: 198-202.

[12] Chuev, G. N., Fedorov, M. V., Chiodo, S., Russo, N. and Sicilia, E. (2008). Hydration of ionic species studied by the reference interaction site model with a repulsive bridge correction, Journal of Computational Chemistry 29(14): 2406-2415.

[13] Chuev, G. N., Chiodo, S., Fedorov, M. V., Russo, N. and Sicilia, E. (2006). Quasilinear RISM-SCF approach for computing solvation free energy of molecular ions, Chemical Physics Letters 418: 485-489.

[14] Dixon, J. (1985). On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non-smooth solution, BIT 25(4): 624-634.

[15] Hsiao, C. H. and Wu, S. P. (2007). Numerical solution of time-varying functional differential equations via Haar wavelets, Applied Mathematics and Computation 188(1): 1049-1058.

[16] Lepik, Ü. and Tamme, E. (2004). Application of the Haar wavelets for solution of linear integral equations, Dynamical Systems and Applications, Proceedings, Antalya, Turkey, pp. 494-507.

[17] Lepik, Ü. (2009). Solving fractional integral equations by the Haar wavelet method, Applied Mathematics and Computation 214(2): 468-478.

[18] Li, C. and Wang, Y. (2009). Numerical algorithm based on Adomian decomposition for fractional differential equations, Computers Mathematics with Applications 57(10): 1672-1681.

[19] Magin, R. L. (2004). Fractional calculus in bioengineering. Part 2, Critical Reviews in Bioengineering 32: 105-193.

[20] Mainardi, F. (1997). Fractional calculus: 'Some basic problems in continuum and statistical mechanics', in A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, NY.

[21] Mandelbrot, B. (1967). Some noises with 1/f spectrum, a bridge between direct current and white noise, IEEE Transactions on Information Theory 13: 289-298

[22] Maleknejad, K. and Mirzaee, F. (2005). Using rationalized Haar wavelet for solving linear integral equations, Applied Mathematics and Computation 160(2): 579-587.

[23] Meral, F. C., Royston, T. J. and Magin, R. (2010). Fractional calculus in viscoelasticity: An experimental study, Communications in Nonlinear Science and Numerical Simulation 15(4): 939-945.

[24] Metzler, R. and Nonnenmacher, T. F. (2003). Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials, International Journal of Plasticity 19(7): 941-959.

[25] Miller, K. and Feldstein, A. (1971). Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM Journal on Mathematical Analysis 2: 242-258.

[26] Miller, K. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, NY.

[27] Pandey, R. K., Singh, O. P. and Singh, V. K. (2009). Efficient algorithms to solve singular integral equations of Abel type, Computers and Mathematics with Applications 57(4): 664-676.

[28] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY.

[29] Strang, G. (1989). Wavelets and dilation equations, SIAM Review 31(4): 614-627.

[30] Vainikko, G. and Pedas, A. (1981). The properties of solutions of weakly singular integral equations, Journal of the Australian Mathematical Society, Series B: Applied Mathematics 22: 419-430.

[31] Vetterli, M. and Kovacevic, J. (1995). Wavelets and Subband Coding, Prentice Hall, Englewood Cliffs, NJ.

[32] Yousefi, S. A. (2006). Numerical solution of Abel's integral equation by using Legendre wavelets, Applied Mathematics and Computation 175(1): 574-580.

[33] Zaman, K. B. M. Q. and Yu, J. C. (1995). Power spectral density of subsonic jetnoise, Journal of Sound and Vibration 98(4): 519-537.