Motion representations for the Lafferriere-Sussmann algorithm for nilpotent control systems
International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 525-534.

Voir la notice de l'article provenant de la source Library of Science

In this paper, an extension of the Lafferriere-Sussmann algorithm of motion planning for driftless nilpotent control systems is analyzed. It is aimed at making more numerous admissible representations of motion in the algorithm. The representations allow designing a shape of trajectories joining the initial and final configuration of the motion planning task. This feature is especially important in motion planning in a cluttered environment. Some natural functions are introduced to measure the shape of a trajectory in the configuration space and to evaluate trajectories corresponding to different representations of motion.
Keywords: control, nilpotent system, algorithm, motion representation
Mots-clés : system sterowania, system nilpotentny, algorytm
@article{IJAMCS_2011_21_3_a10,
     author = {Dul\k{e}ba, I. and Jagodzi\'nski, J.},
     title = {Motion representations for the {Lafferriere-Sussmann} algorithm for nilpotent control systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {525--534},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a10/}
}
TY  - JOUR
AU  - Dulęba, I.
AU  - Jagodziński, J.
TI  - Motion representations for the Lafferriere-Sussmann algorithm for nilpotent control systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2011
SP  - 525
EP  - 534
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a10/
LA  - en
ID  - IJAMCS_2011_21_3_a10
ER  - 
%0 Journal Article
%A Dulęba, I.
%A Jagodziński, J.
%T Motion representations for the Lafferriere-Sussmann algorithm for nilpotent control systems
%J International Journal of Applied Mathematics and Computer Science
%D 2011
%P 525-534
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a10/
%G en
%F IJAMCS_2011_21_3_a10
Dulęba, I.; Jagodziński, J. Motion representations for the Lafferriere-Sussmann algorithm for nilpotent control systems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 525-534. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a10/

[1] Bellaiche, A., Laumond, J.-P. and Chyba, M. (1993). Canonical nilpotent approximation of control systems: Application to nonholonomic motion planning, IEEE Conference on Decision and Control, San Antonio, TX, USA, pp. 2694-2699.

[2] Chow, W. L. (1939). On system of linear partial differential equations of the first order, Mathematische Annalen 117(1): 98-105, (in German).

[3] Dulęba, I. (1998). Algorithms of Motion Planning for Nonholonomic Robots, Wrocław University of Technology Publishing House, Wrocław.

[4] Dulęba, I. (2009). How many P. Hall representations there are for motion planning of nilpotent nonholonomic systems?, IFAC International Conference on Methods and Models in Automation and Robotics, Mi˛edzyzdroje, Poland.

[5] Dulęba, I. and Jagodziński, J. (2008a). On impact of reference trajectory on Lafferierre-Sussmann algorithm applied to the Brockett integrator system, in K. Tchoń and C. Zieliński (Eds.), Problems of Robotics, Science Works: Electronics, Vol. 166, Warsaw University of Technology Publishing House, Warsaw, pp. 515-524, (in Polish).

[6] Dulęba, I. and Jagodziński, J. (2008b). On the structure of Chen-Fliess-Sussmann equation for Ph. Hall motion representation, in K. Tchoń (Ed.), Progress in Robotics, Wydawnictwa Komunikacji i Łączności, Warsaw, pp. 9-20.

[7] Dulęba, I. and Jagodziński, J. (2009). Computational algebra support for the Chen-Fliess-Sussmann differential equation, in K. Kozłowski (Ed.), Robot Motion and Control, Lecture Notes in Control and Information Sciences, Vol. 396, Springer, Berlin/Heidelberg, pp. 133-142.

[8] Dulęba, I. and Khefifi, W. (2006). Pre-control form of the generalized Campbell-Baker-Hausdorff-Dynkin formula for affine nonholonomic systems, Systems and Control Letters 55(2): 146-157.

[9] Golub, G. H. and Loan, C. V. (1996). Matrix Computations, 3rd Edn., The Johns Hopkins University Press, London.

[10] Koussoulas, N. and Skiadas, P. (2001). Motion planning for drift-free nonholonomic system under a discrete levels control constraint, Journal of Intelligent and Robotic Systems 32(1): 55-74.

[11] Koussoulas, N. and Skiadas, P. (2004). Symbolic computation for mobile robot path planning, Journal of Symbolic Computation 37(6): 761-775.

[12] Lafferriere, G. (1991). A general strategy for computing steering controls of systems without drift, IEEE Conference on Decision and Control, Brighton, UK, pp. 1115-1120.

[13] Lafferriere, G. and Sussmann, H. (1990). Motion planning for controllable systems without drift: A preliminary report, Technical report, Rutgers Center for System and Control, Piscataway, NJ.

[14] Lafferriere, G. and Sussmann, H. (1991). Motion planning for controllable systems without drift, IEEE Conference on Robotics and Automation, Brighton, UK, pp. 1148-1153.

[15] LaValle, S. (2006). Planning Algorithms, Cambridge University Press, Cambrigde, MA.

[16] Reutenauer, C. (1993). Free Lie Algebras, Clarendon Press, Oxford.

[17] Rouchon, P. (2001). Motion planning, equivalence, infinite dimensional systems, International Journal of Applied Mathematics and Computer Science 11(1): 165-188.

[18] Strichartz, R. S. (1987). The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, Journal of Functional Analysis 72(2): 320-345.

[19] Struemper, H. (1998). Nilpotent approximation and nilpotentization for under-actuated systems on matrix Lie groups, IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 4188-4193.

[20] Sussmann, H. (1991). Two new methods for motion planning for controllable systems without drift, European Control Conference, Grenoble, France, pp. 1501-1506.

[21] Vendittelli, M., Oriolo, G., Jean, F. and Laumond, J.-P. (2004). Nonhomogeneous nilpotent approximations for nonholonomic system with singularities, IEEE Transactions on Automatic Control 49(2): 261-266.