Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_3_a10, author = {Dul\k{e}ba, I. and Jagodzi\'nski, J.}, title = {Motion representations for the {Lafferriere-Sussmann} algorithm for nilpotent control systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {525--534}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a10/} }
TY - JOUR AU - Dulęba, I. AU - Jagodziński, J. TI - Motion representations for the Lafferriere-Sussmann algorithm for nilpotent control systems JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 525 EP - 534 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a10/ LA - en ID - IJAMCS_2011_21_3_a10 ER -
%0 Journal Article %A Dulęba, I. %A Jagodziński, J. %T Motion representations for the Lafferriere-Sussmann algorithm for nilpotent control systems %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 525-534 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a10/ %G en %F IJAMCS_2011_21_3_a10
Dulęba, I.; Jagodziński, J. Motion representations for the Lafferriere-Sussmann algorithm for nilpotent control systems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 3, pp. 525-534. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_3_a10/
[1] Bellaiche, A., Laumond, J.-P. and Chyba, M. (1993). Canonical nilpotent approximation of control systems: Application to nonholonomic motion planning, IEEE Conference on Decision and Control, San Antonio, TX, USA, pp. 2694-2699.
[2] Chow, W. L. (1939). On system of linear partial differential equations of the first order, Mathematische Annalen 117(1): 98-105, (in German).
[3] Dulęba, I. (1998). Algorithms of Motion Planning for Nonholonomic Robots, Wrocław University of Technology Publishing House, Wrocław.
[4] Dulęba, I. (2009). How many P. Hall representations there are for motion planning of nilpotent nonholonomic systems?, IFAC International Conference on Methods and Models in Automation and Robotics, Mi˛edzyzdroje, Poland.
[5] Dulęba, I. and Jagodziński, J. (2008a). On impact of reference trajectory on Lafferierre-Sussmann algorithm applied to the Brockett integrator system, in K. Tchoń and C. Zieliński (Eds.), Problems of Robotics, Science Works: Electronics, Vol. 166, Warsaw University of Technology Publishing House, Warsaw, pp. 515-524, (in Polish).
[6] Dulęba, I. and Jagodziński, J. (2008b). On the structure of Chen-Fliess-Sussmann equation for Ph. Hall motion representation, in K. Tchoń (Ed.), Progress in Robotics, Wydawnictwa Komunikacji i Łączności, Warsaw, pp. 9-20.
[7] Dulęba, I. and Jagodziński, J. (2009). Computational algebra support for the Chen-Fliess-Sussmann differential equation, in K. Kozłowski (Ed.), Robot Motion and Control, Lecture Notes in Control and Information Sciences, Vol. 396, Springer, Berlin/Heidelberg, pp. 133-142.
[8] Dulęba, I. and Khefifi, W. (2006). Pre-control form of the generalized Campbell-Baker-Hausdorff-Dynkin formula for affine nonholonomic systems, Systems and Control Letters 55(2): 146-157.
[9] Golub, G. H. and Loan, C. V. (1996). Matrix Computations, 3rd Edn., The Johns Hopkins University Press, London.
[10] Koussoulas, N. and Skiadas, P. (2001). Motion planning for drift-free nonholonomic system under a discrete levels control constraint, Journal of Intelligent and Robotic Systems 32(1): 55-74.
[11] Koussoulas, N. and Skiadas, P. (2004). Symbolic computation for mobile robot path planning, Journal of Symbolic Computation 37(6): 761-775.
[12] Lafferriere, G. (1991). A general strategy for computing steering controls of systems without drift, IEEE Conference on Decision and Control, Brighton, UK, pp. 1115-1120.
[13] Lafferriere, G. and Sussmann, H. (1990). Motion planning for controllable systems without drift: A preliminary report, Technical report, Rutgers Center for System and Control, Piscataway, NJ.
[14] Lafferriere, G. and Sussmann, H. (1991). Motion planning for controllable systems without drift, IEEE Conference on Robotics and Automation, Brighton, UK, pp. 1148-1153.
[15] LaValle, S. (2006). Planning Algorithms, Cambridge University Press, Cambrigde, MA.
[16] Reutenauer, C. (1993). Free Lie Algebras, Clarendon Press, Oxford.
[17] Rouchon, P. (2001). Motion planning, equivalence, infinite dimensional systems, International Journal of Applied Mathematics and Computer Science 11(1): 165-188.
[18] Strichartz, R. S. (1987). The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, Journal of Functional Analysis 72(2): 320-345.
[19] Struemper, H. (1998). Nilpotent approximation and nilpotentization for under-actuated systems on matrix Lie groups, IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 4188-4193.
[20] Sussmann, H. (1991). Two new methods for motion planning for controllable systems without drift, European Control Conference, Grenoble, France, pp. 1501-1506.
[21] Vendittelli, M., Oriolo, G., Jean, F. and Laumond, J.-P. (2004). Nonhomogeneous nilpotent approximations for nonholonomic system with singularities, IEEE Transactions on Automatic Control 49(2): 261-266.