Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_2_a7, author = {Karthikeyan, S. and Balachandran, K.}, title = {Constrained controllability of nonlinear stochastic impulsive systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {307--316}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a7/} }
TY - JOUR AU - Karthikeyan, S. AU - Balachandran, K. TI - Constrained controllability of nonlinear stochastic impulsive systems JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 307 EP - 316 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a7/ LA - en ID - IJAMCS_2011_21_2_a7 ER -
%0 Journal Article %A Karthikeyan, S. %A Balachandran, K. %T Constrained controllability of nonlinear stochastic impulsive systems %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 307-316 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a7/ %G en %F IJAMCS_2011_21_2_a7
Karthikeyan, S.; Balachandran, K. Constrained controllability of nonlinear stochastic impulsive systems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 2, pp. 307-316. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a7/
[1] Alotaibi, S., Sen, M., Goodwine, B. and Yang, K. T. (2004). Controllability of cross-flow heat exchangers, International Communications of Heat and Mass Transfer 47(5): 913-924.
[2] Anichini, G. (1980). Global controllability of nonlinear control processes with prescribed controls, Journal of Optimization Theory and Applications 32(2): 183-199.
[3] Anichini, G. (1983). Controllability and controllability with prescribed controls, Journal of Optimization Theory and Applications 39(1): 35-45.
[4] Balachandran, K. and Dauer, J. P. (1987). Controllability of nonlinear systems via fixed point theorems, Journal of Optimization Theory and Applications 53(3): 345-352.
[5] Balachandran, K. and Karthikeyan, S. (2007). Controllability of stochastic integro differential systems, International Journal of Control 80(3): 486-491.
[6] Balachandran, K. and Karthikeyan, S. (2010). Controllability of nonlinear stochastic systems with prescribed controls, IMA Journal of Mathematical Control and Information 27(1): 77-89.
[7] Balachandran, K., Karthikeyan, S. and Park, J. Y. (2009). Controllability of stochastic systems with distributed delays in control, International Journal of Control 82(7): 1288-1296.
[8] Balachandran, K. and Lalitha, D. (1992). Controllability of nonlinear Volterra integrodifferential systems with prescribed controls, Journal of Applied Mathematics and Stochastic Analysis 5(2): 139-146.
[9] Benzaid, Z. (1988). Global null controllability of perturbed linear systems with constrained controls, Journal of Mathematical Analysis and Applications 136(1): 201-216.
[10] Chukwu, E. N. (1992). Global constrained null controllability of nonlinear neutral systems, Applied Mathematics and Computation 49(1): 95-110.
[11] Conti, R. (1976). Linear Differential Equations and Control, Academic Press, New York, NY.
[12] Gelig, A. K. and Churilov, A. N. (1998). Stability and Oscillations of Nonlinear Pulse-Modulated Systems, Birkhäuser, Boston, MA.
[13] Gilbert, E. G. (1992). Linear control systems with pointwise-intime constraints: What do we do about them?, Proceedings of the 1992 American Control Conference, Chicago, IL, USA, p. 2565.
[14] Hernandez, E. and O'Regan, D. (2009). Controllability of Volterra-Fredholm type systems in Banach spaces, Journal of the Franklin Institute 346(2): 95-101.
[15] Karthikeyan, S. and Balachandran, K. (2009). Controllability of nonlinear stochastic neutral impulsive system, Nonlinear Analysis: Hybrid Systems 3(3): 266-276.
[16] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
[17] Klamka, J. (1993). Controllability of dynamical systems-A survey, Archives of Control Sciences 2: 281-307.
[18] Klamka, J. (1996). Constrained controllability of nonlinear systems, Journal of Mathematical Analysis and Applications 201(2): 365-374.
[19] Klamka, J. (1999). Constrained controllability of dynamical systems, International Journal of Applied Mathematics and Computer Science 9(9): 231-244.
[20] Klamka, J. (2000a). Constrained approximate controllability, IEEE Transactions on Automatic Control 45(9): 1745-1749.
[21] Klamka, J. (2000b). Schauder's fixed-point theorem in nonlinear controllability problems, Control and Cybernetics 29(1): 153-165.
[22] Klamka, J. (2001). Constrained controllability of semilinear systems, Nonlinear Analysis 47(5): 2939-2949.
[23] Klamka, J. (2007a). Stochastic controllability of linear systems with state delays, International Journal of Applied Mathematics and Computer Science 17(1): 5-13, DOI: 10.2478/v10006-007-001-8.
[24] Klamka, J. (2007b). Stochastic controllability of linear systems with delay in control, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(1): 23-29.
[25] Lakshmikantham, V., Bainiv, D. and P. Simeonov, P. (1989). Theory of Impulsive Differential Equations, World Scientific, Singapore.
[26] Lukes, D. L. (1972). Global controllability of nonlinear systems, SIAM Journal of Control 10(1): 112-126.
[27] Mahmudov, N. I. (2001). Controllability of linear stochastic systems, IEEE Transactions on Automatic Control 46(5): 724-731.
[28] Mahmudov, N. I. and Zorlu, S. (2003). Controllability of nonlinear stochastic systems, International Journal of Control 76(2): 95-104.
[29] Respondek, J. S. (2004). Controllability of dynamical systems with constraints, System and Control Letters 54(4): 293-314
[30] Respondek, J. S. (2007). Numerical analysis of controllability of diffusive-convective system with limited manipulating variables, International Communications in Heat and Mass Transfer 34(8): 934-944.
[31] Respondek, J. S. (2008). Approximate controllability of the nth order infinite dimensional systems with controls delayed by the control devices, International Journal of Systems Science 39(8): 765-782.
[32] Respondek, J. S. (2010). Numerical simulation in the partial differential equations: controllability analysis with physically meaningful constraints, Mathematics and Computers in Simulation 81(1): 120-132.
[33] Schmitendorf, W. and Barmish, B. (1981). Controlling a constrained linear system to an affinity target, IEEE Transactions on Automatic Control 26(3): 761-763.
[34] Semino, D. and Ray, W. H. (1995). Control of systems described by population balance equations, II. Emulsion polymerization with constrained control action, Chemical Engineering Science 50(11): 1825-1839.
[35] Shena, L., Shi, J. and Sun, J. (2010). Complete controllability of impulsive stochastic integro-differential systems, Automatica 46(6): 1068-1073.
[36] Sikora, B. (2003). On the constrained controllability of dynamical systems with multiple delays in the state, International Journal of Applied Mathematics and Computer Science 13(13): 469-479.
[37] Sivasundaram, S., and Uvah, J. (2008). Controllability of impulsive hybrid integro differential systems, Nonlinear Analysis: Hybrid Systems 2(4): 1003-1009.
[38] Zabczyk, J. (1981). Controllability of stochastic linear systems, Systems and Control Letters 1(1): 25-31.