Constrained controllability of nonlinear stochastic impulsive systems
International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 2, pp. 307-316.

Voir la notice de l'article provenant de la source Library of Science

This paper is concerned with complete controllability of a class of nonlinear stochastic systems involving impulsive effects in a finite time interval by means of controls whose initial and final values can be assigned in advance. The result is achieved by using a fixed-point argument.
Keywords: complete controllability, nonlinear stochastic system, impulsive effect, Banach contraction principle
Mots-clés : sterowalność zupełna, system nieliniowy, system stochastyczny
@article{IJAMCS_2011_21_2_a7,
     author = {Karthikeyan, S. and Balachandran, K.},
     title = {Constrained controllability of nonlinear stochastic impulsive systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {307--316},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a7/}
}
TY  - JOUR
AU  - Karthikeyan, S.
AU  - Balachandran, K.
TI  - Constrained controllability of nonlinear stochastic impulsive systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2011
SP  - 307
EP  - 316
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a7/
LA  - en
ID  - IJAMCS_2011_21_2_a7
ER  - 
%0 Journal Article
%A Karthikeyan, S.
%A Balachandran, K.
%T Constrained controllability of nonlinear stochastic impulsive systems
%J International Journal of Applied Mathematics and Computer Science
%D 2011
%P 307-316
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a7/
%G en
%F IJAMCS_2011_21_2_a7
Karthikeyan, S.; Balachandran, K. Constrained controllability of nonlinear stochastic impulsive systems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 2, pp. 307-316. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a7/

[1] Alotaibi, S., Sen, M., Goodwine, B. and Yang, K. T. (2004). Controllability of cross-flow heat exchangers, International Communications of Heat and Mass Transfer 47(5): 913-924.

[2] Anichini, G. (1980). Global controllability of nonlinear control processes with prescribed controls, Journal of Optimization Theory and Applications 32(2): 183-199.

[3] Anichini, G. (1983). Controllability and controllability with prescribed controls, Journal of Optimization Theory and Applications 39(1): 35-45.

[4] Balachandran, K. and Dauer, J. P. (1987). Controllability of nonlinear systems via fixed point theorems, Journal of Optimization Theory and Applications 53(3): 345-352.

[5] Balachandran, K. and Karthikeyan, S. (2007). Controllability of stochastic integro differential systems, International Journal of Control 80(3): 486-491.

[6] Balachandran, K. and Karthikeyan, S. (2010). Controllability of nonlinear stochastic systems with prescribed controls, IMA Journal of Mathematical Control and Information 27(1): 77-89.

[7] Balachandran, K., Karthikeyan, S. and Park, J. Y. (2009). Controllability of stochastic systems with distributed delays in control, International Journal of Control 82(7): 1288-1296.

[8] Balachandran, K. and Lalitha, D. (1992). Controllability of nonlinear Volterra integrodifferential systems with prescribed controls, Journal of Applied Mathematics and Stochastic Analysis 5(2): 139-146.

[9] Benzaid, Z. (1988). Global null controllability of perturbed linear systems with constrained controls, Journal of Mathematical Analysis and Applications 136(1): 201-216.

[10] Chukwu, E. N. (1992). Global constrained null controllability of nonlinear neutral systems, Applied Mathematics and Computation 49(1): 95-110.

[11] Conti, R. (1976). Linear Differential Equations and Control, Academic Press, New York, NY.

[12] Gelig, A. K. and Churilov, A. N. (1998). Stability and Oscillations of Nonlinear Pulse-Modulated Systems, Birkhäuser, Boston, MA.

[13] Gilbert, E. G. (1992). Linear control systems with pointwise-intime constraints: What do we do about them?, Proceedings of the 1992 American Control Conference, Chicago, IL, USA, p. 2565.

[14] Hernandez, E. and O'Regan, D. (2009). Controllability of Volterra-Fredholm type systems in Banach spaces, Journal of the Franklin Institute 346(2): 95-101.

[15] Karthikeyan, S. and Balachandran, K. (2009). Controllability of nonlinear stochastic neutral impulsive system, Nonlinear Analysis: Hybrid Systems 3(3): 266-276.

[16] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.

[17] Klamka, J. (1993). Controllability of dynamical systems-A survey, Archives of Control Sciences 2: 281-307.

[18] Klamka, J. (1996). Constrained controllability of nonlinear systems, Journal of Mathematical Analysis and Applications 201(2): 365-374.

[19] Klamka, J. (1999). Constrained controllability of dynamical systems, International Journal of Applied Mathematics and Computer Science 9(9): 231-244.

[20] Klamka, J. (2000a). Constrained approximate controllability, IEEE Transactions on Automatic Control 45(9): 1745-1749.

[21] Klamka, J. (2000b). Schauder's fixed-point theorem in nonlinear controllability problems, Control and Cybernetics 29(1): 153-165.

[22] Klamka, J. (2001). Constrained controllability of semilinear systems, Nonlinear Analysis 47(5): 2939-2949.

[23] Klamka, J. (2007a). Stochastic controllability of linear systems with state delays, International Journal of Applied Mathematics and Computer Science 17(1): 5-13, DOI: 10.2478/v10006-007-001-8.

[24] Klamka, J. (2007b). Stochastic controllability of linear systems with delay in control, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(1): 23-29.

[25] Lakshmikantham, V., Bainiv, D. and P. Simeonov, P. (1989). Theory of Impulsive Differential Equations, World Scientific, Singapore.

[26] Lukes, D. L. (1972). Global controllability of nonlinear systems, SIAM Journal of Control 10(1): 112-126.

[27] Mahmudov, N. I. (2001). Controllability of linear stochastic systems, IEEE Transactions on Automatic Control 46(5): 724-731.

[28] Mahmudov, N. I. and Zorlu, S. (2003). Controllability of nonlinear stochastic systems, International Journal of Control 76(2): 95-104.

[29] Respondek, J. S. (2004). Controllability of dynamical systems with constraints, System and Control Letters 54(4): 293-314

[30] Respondek, J. S. (2007). Numerical analysis of controllability of diffusive-convective system with limited manipulating variables, International Communications in Heat and Mass Transfer 34(8): 934-944.

[31] Respondek, J. S. (2008). Approximate controllability of the nth order infinite dimensional systems with controls delayed by the control devices, International Journal of Systems Science 39(8): 765-782.

[32] Respondek, J. S. (2010). Numerical simulation in the partial differential equations: controllability analysis with physically meaningful constraints, Mathematics and Computers in Simulation 81(1): 120-132.

[33] Schmitendorf, W. and Barmish, B. (1981). Controlling a constrained linear system to an affinity target, IEEE Transactions on Automatic Control 26(3): 761-763.

[34] Semino, D. and Ray, W. H. (1995). Control of systems described by population balance equations, II. Emulsion polymerization with constrained control action, Chemical Engineering Science 50(11): 1825-1839.

[35] Shena, L., Shi, J. and Sun, J. (2010). Complete controllability of impulsive stochastic integro-differential systems, Automatica 46(6): 1068-1073.

[36] Sikora, B. (2003). On the constrained controllability of dynamical systems with multiple delays in the state, International Journal of Applied Mathematics and Computer Science 13(13): 469-479.

[37] Sivasundaram, S., and Uvah, J. (2008). Controllability of impulsive hybrid integro differential systems, Nonlinear Analysis: Hybrid Systems 2(4): 1003-1009.

[38] Zabczyk, J. (1981). Controllability of stochastic linear systems, Systems and Control Letters 1(1): 25-31.